enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Compounding of steam turbines - Wikipedia

    en.wikipedia.org/wiki/Compounding_of_steam_turbines

    Fig-3: Schematic Diagram of Pressure compounded Impulse Turbine. The pressure compounded Impulse turbine is also called a Rateau turbine, after its inventor. This is used to solve the problem of high blade velocity in the single-stage impulse turbine. It consists of alternate rings of nozzles and turbine blades.

  3. Degree of reaction - Wikipedia

    en.wikipedia.org/wiki/Degree_of_Reaction

    The degree of reaction contributes to the stage efficiency and thus used as a design parameter. Stages having 50% degree of reaction are used where the pressure drop is equally shared by the stator and the rotor for a turbine. Figure 4. Velocity triangle for Degree of Reaction = 1/2 in a turbine

  4. Steam turbine - Wikipedia

    en.wikipedia.org/wiki/Steam_turbine

    In 1827 the Frenchmen Real and Pichon patented and constructed a compound impulse turbine. [11] The first steam turbine-powered ship Turbinia: fastest in the world at that time. The modern steam turbine was invented in 1884 by Charles Parsons, whose first model was connected to a dynamo that generated 7.5 kilowatts (10.1 hp) of electricity. [12]

  5. Pressure compounding in turbines - Wikipedia

    en.wikipedia.org/wiki/Pressure_compounding_in...

    The exit steam from one turbine is made to enter the nozzle of the succeeding turbine. Each of the simple impulse turbines would then be termed a "stage" of the turbine. Each stage comprises its ring of nozzle and blades. The steam from the boiler passes through the first nozzle ring, where its pressure drops and velocity increases. [2]

  6. Campbell diagram - Wikipedia

    en.wikipedia.org/wiki/Campbell_diagram

    In rotordynamical systems, the eigenfrequencies often depend on the rotation rates due to the induced gyroscopic effects or variable hydrodynamic conditions in fluid bearings. It might represent the following cases: Campbell Diagram of a steam turbine. Analysis shows that there are well-damped critical speed at lower speed range.

  7. Rankine cycle - Wikipedia

    en.wikipedia.org/wiki/Rankine_cycle

    By condensing the working steam vapor to a liquid, the pressure at the turbine outlet is lowered, and the energy required by the feed pump consumes only 1% to 3% of the turbine output power. These factors contribute to a higher efficiency for the cycle. The benefit of this is offset by the low temperatures of steam admitted to the turbine(s).

  8. State variable - Wikipedia

    en.wikipedia.org/wiki/State_variable

    In control engineering and other areas of science and engineering, state variables are used to represent the states of a general system. The set of possible combinations of state variable values is called the state space of the system. The equations relating the current state of a system to its most recent input and past states are called the ...

  9. Turbine - Wikipedia

    en.wikipedia.org/wiki/Turbine

    A steam turbine with the case opened Humming of a small pneumatic turbine used in a German 1940s-vintage safety lamp. A turbine (/ ˈ t ɜːr b aɪ n / or / ˈ t ɜːr b ɪ n /) (from the Greek τύρβη, tyrbē, or Latin turbo, meaning vortex) [1] [2] is a rotary mechanical device that extracts energy from a fluid flow and converts it into useful work.