enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Bounded variation - Wikipedia

    en.wikipedia.org/wiki/Bounded_variation

    As particular examples of Banach spaces, Dunford & Schwartz (1958, Chapter IV) consider spaces of sequences of bounded variation, in addition to the spaces of functions of bounded variation. The total variation of a sequence x = ( x i ) of real or complex numbers is defined by

  3. Helly's selection theorem - Wikipedia

    en.wikipedia.org/wiki/Helly's_selection_theorem

    In mathematics, Helly's selection theorem (also called the Helly selection principle) states that a uniformly bounded sequence of monotone real functions admits a convergent subsequence. In other words, it is a sequential compactness theorem for the space of uniformly bounded monotone functions. It is named for the Austrian mathematician Eduard ...

  4. Total variation - Wikipedia

    en.wikipedia.org/wiki/Total_variation

    In mathematics, the total variation identifies several slightly different concepts, related to the (local or global) structure of the codomain of a function or a measure.For a real-valued continuous function f, defined on an interval [a, b] ⊂ R, its total variation on the interval of definition is a measure of the one-dimensional arclength of the curve with parametric equation x ↦ f(x ...

  5. Regulated function - Wikipedia

    en.wikipedia.org/wiki/Regulated_function

    The set of discontinuities of a regulated function of bounded variation BV is countable for such functions have only jump-type of discontinuities. To see this it is sufficient to note that given ϵ > 0 {\displaystyle \epsilon >0} , the set of points at which the right and left limits differ by more than ϵ {\displaystyle \epsilon } is finite.

  6. Fraňková–Helly selection theorem - Wikipedia

    en.wikipedia.org/wiki/Fraňková–Helly...

    As before, let X be a separable Hilbert space and let Reg([0, T]; X) denote the space of regulated functions f : [0, T] → X, equipped with the supremum norm.Let (f n) n∈N be a sequence in Reg([0, T]; X) satisfying the following condition: for every ε > 0, there exists some L ε > 0 so that each f n may be approximated by a u n ∈ BV([0, T]; X) satisfying

  7. p-variation - Wikipedia

    en.wikipedia.org/wiki/P-variation

    The case when p is one is called total variation, and functions with a finite 1-variation are called bounded variation functions. This concept should not be confused with the notion of p-th variation along a sequence of partitions, which is computed as a limit along a given sequence () of time partitions: [1]

  8. Convolution - Wikipedia

    en.wikipedia.org/wiki/Convolution

    where the norm is the total variation of a measure. Because the space of measures of bounded variation is a Banach space, convolution of measures can be treated with standard methods of functional analysis that may not apply for the convolution of distributions.

  9. Calculus of variations - Wikipedia

    en.wikipedia.org/wiki/Calculus_of_Variations

    Calculus of variations is concerned with variations of functionals, which are small changes in the functional's value due to small changes in the function that is its argument. The first variation [l] is defined as the linear part of the change in the functional, and the second variation [m] is defined as the quadratic part. [22]