Search results
Results from the WOW.Com Content Network
In the presence of disease or other conditions that change the hemoglobin oxygen affinity and, consequently, shift the curve to the right or left, the P 50 changes accordingly. An increased P 50 indicates a rightward shift of the standard curve, which means that a larger partial pressure is necessary to maintain a 50% oxygen saturation. This ...
Venous oxygen saturation (SvO 2) is the percentage of oxygenated hemoglobin returning to the right side of the heart. It can be measured to see if oxygen delivery meets the tissues' demands. SvO 2 typically varies between 60% and 80%. [9] A lower value indicates that the body is in lack of oxygen, and ischemic diseases occur.
Plot of the % saturation of oxygen binding to haemoglobin, as a function of the amount of oxygen present (expressed as an oxygen pressure). Data (red circles) and Hill equation fit (black curve) from original 1910 paper of Hill. [6] The Hill equation is commonly expressed in the following ways: [2] [7] [8]
Assuming a hemoglobin concentration of 15 g/dL and an oxygen saturation of 99%, the oxygen concentration of arterial blood is approximately 200 mL of O 2 per L. The saturation of mixed venous blood is approximately 75% in health. Using this value in the above equation, the oxygen concentration of mixed venous blood is approximately 150 mL of O ...
Hemoglobin's oxygen binding affinity (see oxygen–haemoglobin dissociation curve) is inversely related both to acidity and to the concentration of carbon dioxide. [1] That is, the Bohr effect refers to the shift in the oxygen dissociation curve caused by changes in the concentration of carbon dioxide or the pH of the environment.
A 1 mmHg change in PaCO 2 above or below 40 mmHg results in 0.008 unit change in pH in the opposite direction. [11] The PaCO 2 will decrease by about 1 mmHg for every 1 mEq/L reduction in [HCO − 3] below 24 mEq/L; A change in [HCO − 3] of 10 mEq/L will result in a change in pH of approximately 0.15 pH units in the same direction.
Dissolved oxygen levels required by various species in the Chesapeake Bay (US). In aquatic environments, oxygen saturation is a ratio of the concentration of "dissolved oxygen" (DO, O 2), to the maximum amount of oxygen that will dissolve in that water body, at the temperature and pressure which constitute stable equilibrium conditions.
David R. Lide (ed), CRC Handbook of Chemistry and Physics, 84th Edition.CRC Press. Boca Raton, Florida, 2003; Section 6, Fluid Properties; Vapor Pressure Uncertainties of several degrees should generally be assumed.