enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Adder (electronics) - Wikipedia

    en.wikipedia.org/wiki/Adder_(electronics)

    The gate delay can easily be calculated by inspection of the full adder circuit. Each full adder requires three levels of logic. In a 32-bit ripple-carry adder, there are 32 full adders, so the critical path (worst case) delay is 3 (from input to carry in first adder) + 31 × 2 (for carry propagation in latter adders) = 65 gate delays. [6]

  3. Serial binary adder - Wikipedia

    en.wikipedia.org/wiki/Serial_binary_adder

    The serial binary adder or bit-serial adder is a digital circuit that performs binary addition bit by bit. The serial full adder has three single-bit inputs for the numbers to be added and the carry in. There are two single-bit outputs for the sum and carry out. The carry-in signal is the previously calculated carry-out signal. The addition is ...

  4. Carry-skip adder - Wikipedia

    en.wikipedia.org/wiki/Carry-skip_adder

    A carry-skip adder [nb 1] (also known as a carry-bypass adder) is an adder implementation that improves on the delay of a ripple-carry adder with little effort compared to other adders. The improvement of the worst-case delay is achieved by using several carry-skip adders to form a block-carry-skip adder.

  5. Binary multiplier - Wikipedia

    en.wikipedia.org/wiki/Binary_multiplier

    Full adder; Ripple-carry adder; ... (the 0th bit of a) 8 times (Verilog notation). ... and all the −1's in bit columns 7 through 14 (where each of the MSBs are ...

  6. List of 7400-series integrated circuits - Wikipedia

    en.wikipedia.org/wiki/List_of_7400-series...

    1 gated full adder: 14 SN7480: 74x81 1 16-bit RAM: 14 SN7481A: 74x82 1 2-bit binary full adder 14 SN7482: 74x83 1 4-bit binary full adder 16 SN74LS83A: 74x84 1 16-bit RAM: 16 SN7484A: 74x85 1 4-bit magnitude comparator: 16 SN74LS85: 74x86 4 quad 2-input XOR gate: 14 SN74LS86A: 74x87 1 4-bit true/complement/zero/one element 14 SN74H87: 74x88 1 ...

  7. Verilog - Wikipedia

    en.wikipedia.org/wiki/Verilog

    Verilog was later submitted to IEEE and became IEEE Standard 1364-1995, commonly referred to as Verilog-95. In the same time frame Cadence initiated the creation of Verilog-A to put standards support behind its analog simulator Spectre. Verilog-A was never intended to be a standalone language and is a subset of Verilog-AMS which encompassed ...

  8. Dadda multiplier - Wikipedia

    en.wikipedia.org/wiki/Dadda_multiplier

    The Dadda multiplier is a hardware binary multiplier design invented by computer scientist Luigi Dadda in 1965. [1] It uses a selection of full and half adders to sum the partial products in stages (the Dadda tree or Dadda reduction) until two numbers are left.

  9. Carry-save adder - Wikipedia

    en.wikipedia.org/wiki/Carry-save_adder

    A carry-save adder [1] [2] [nb 1] is a type of digital adder, used to efficiently compute the sum of three or more binary numbers. It differs from other digital adders in that it outputs two (or more) numbers, and the answer of the original summation can be achieved by adding these outputs together.