enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Joule–Thomson effect - Wikipedia

    en.wikipedia.org/wiki/JouleThomson_effect

    In thermodynamics, the Joule–Thomson effect (also known as the Joule–Kelvin effect or Kelvin–Joule effect) describes the temperature change of a real gas or liquid (as differentiated from an ideal gas) when it is expanding; typically caused by the pressure loss from flow through a valve or porous plug while keeping it insulated so that no heat is exchanged with the environment.

  3. Cryocooler - Wikipedia

    en.wikipedia.org/wiki/Cryocooler

    Fig. 8 Schematic diagram of a JT liquefier. A fraction x of the compressed gas is removed as liquid. At room temperature it is supplied as gas at 1 bar, so that the system is in the steady state. The Joule-Thomson (JT) cooler was invented by Carl von Linde and William Hampson so it is also called the Linde-Hampson cooler.

  4. Inversion temperature - Wikipedia

    en.wikipedia.org/wiki/Inversion_temperature

    This temperature change is known as the Joule–Thomson effect, and is exploited in the liquefaction of gases. Inversion temperature depends on the nature of the gas. For a van der Waals gas we can calculate the enthalpy using statistical mechanics as

  5. Hampson–Linde cycle - Wikipedia

    en.wikipedia.org/wiki/Hampson–Linde_cycle

    The gas is further cooled by passing the gas through a Joule–Thomson orifice (expansion valve); the gas is now at the lower pressure. The low pressure gas is now at its coolest in the current cycle. Some of the gas condenses and becomes output product.

  6. Joule effect - Wikipedia

    en.wikipedia.org/wiki/Joule_effect

    The Joule–Thomson effect, the temperature change of a gas when it is forced through a valve or porous plug while keeping it insulated so that no heat is exchanged with the environment. The Gough–Joule effect or the Gow–Joule effect, which is the tendency of elastomers to contract if heated while they are under tension.

  7. Thermodynamic diagrams - Wikipedia

    en.wikipedia.org/wiki/Thermodynamic_diagrams

    The main feature of thermodynamic diagrams is the equivalence between the area in the diagram and energy. When air changes pressure and temperature during a process and prescribes a closed curve within the diagram the area enclosed by this curve is proportional to the energy which has been gained or released by the air.

  8. Joule - Wikipedia

    en.wikipedia.org/wiki/Joule

    This is the definition declared in the modern International System of Units in 1960. [13] The definition of the joule as J = kg⋅m 2 ⋅s −2 has remained unchanged since 1946, but the joule as a derived unit has inherited changes in the definitions of the second (in 1960 and 1967), the metre (in 1983) and the kilogram . [14]

  9. Thermoelectric effect - Wikipedia

    en.wikipedia.org/wiki/Thermoelectric_effect

    The Thomson effect is an extension of the Peltier–Seebeck model and is credited to Lord Kelvin. Joule heating, the heat that is generated whenever a current is passed through a conductive material, is not generally termed a thermoelectric effect.