Search results
Results from the WOW.Com Content Network
Uranium–lead dating, abbreviated U–Pb dating, is one of the oldest [1] and most refined of the radiometric dating schemes. It can be used to date rocks that formed and crystallised from about 1 million years to over 4.5 billion years ago with routine precisions in the 0.1–1 percent range. [2] [3] The method is usually applied to zircon.
For example, the age of the Amitsoq gneisses from western Greenland was determined to be 3.60 ± 0.05 Ga (billion years ago) using uranium–lead dating and 3.56 ± 0.10 Ga (billion years ago) using lead–lead dating, results that are consistent with each other. [13]: 142–143
He established that lead (the metal) was the final decay product of uranium, noted that the lead-uranium ratio was greater in older rocks and, acting on a suggestion by Ernest Rutherford, he was the first to measure the age of rocks by the decay of uranium to lead, in 1907. He obtained results of 400 to 2200 million years, the first successful ...
Zircon is extremely useful for geological dating: when forming, it collects tiny imperfections of uranium, but never lead. It follows that if lead is present in zircon, it must have come from decay of the uranium present. (The process is known as U-Pb dating.) The team measured the concentrations and isotopic compositions of foreign elements ...
Detrital zircon geochronology has become increasingly popular in geological studies from the 2000s mainly due to the advancement in radiometric dating techniques. [ 1 ] [ 2 ] Detrital zircon age data can be used to constrain the maximum depositional age, determine provenance , [ 3 ] and reconstruct the tectonic setting on a regional scale.
While the results of these techniques are largely accepted within the scientific community, there are several factors which can hinder the discovery of accurate absolute dating, including sampling errors and geological disruptions. [5] This type of chronological dating utilizes absolute referent criteria, mainly the radiometric dating methods. [6]
All sediments and soils contain trace amounts of radioactive isotopes of elements such as potassium, uranium, thorium, and rubidium.These slowly decay over time and the ionizing radiation they produce is absorbed by mineral grains in the sediments such as quartz and potassium feldspar.
Language links are at the top of the page across from the title.