Search results
Results from the WOW.Com Content Network
Veins have a much higher compliance than arteries (largely due to their thinner walls.) Veins which are abnormally compliant can be associated with edema. Pressure stockings are sometimes used to externally reduce compliance, and thus keep blood from pooling in the legs.
Mean blood pressure drops over the whole circulation, although most of the fall occurs along the small arteries and arterioles. [35] Gravity affects blood pressure via hydrostatic forces (e.g., during standing), and valves in veins, breathing, and pumping from contraction of skeletal muscles also influence blood pressure in veins. [32]
Antihypertensive agents comprise multiple classes of compounds that are intended to manage hypertension (high blood pressure). Antihypertensive therapy aims to maintain a blood pressure goal of <140/90 mmHg in all patients, as well as to prevent the progression or recurrence of cardiovascular diseases (CVD) in hypertensive patients with established CVD. [2]
Blood flows back to the heart in the systemic deep veins, with the flow of blood maintained by one-way valves in the deep veins, superficial veins, and in the perforator veins. [20] The venous valves serve to prevent regurgitation (backflow) due to the low pressure of veins, and the pull of gravity. [ 1 ]
High blood pressure and heart failure which can enlarge the heart and arteries, and scar tissue can form after a heart attack or injury. [4] The three main types of artificial heart valves are mechanical, biological (bioprosthetic/tissue), and tissue-engineered valves.
Cardiac physiology or heart function is the study of healthy, unimpaired function of the heart: involving blood flow; myocardium structure; the electrical conduction system of the heart; the cardiac cycle and cardiac output and how these interact and depend on one another.
An anticoagulant, commonly known as a blood thinner, is a chemical substance that prevents or reduces the coagulation of blood, prolonging the clotting time. [1] Some occur naturally in blood-eating animals, such as leeches and mosquitoes , which help keep the bite area unclotted long enough for the animal to obtain blood.
Venous return (VR) is the flow of blood back to the heart. Under steady-state conditions, venous return must equal cardiac output (Q), when averaged over time because the cardiovascular system is essentially a closed loop. Otherwise, blood would accumulate in either the systemic or pulmonary circulations.