enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Nuclear force - Wikipedia

    en.wikipedia.org/wiki/Nuclear_force

    Conversely, energy is released when a nucleus is created from free nucleons or other nuclei: the nuclear binding energy. Because of mass–energy equivalence (i.e. Einstein's formula E = mc 2), releasing this energy causes the mass of the nucleus to be lower than the total mass of the individual nucleons, leading to the so-called "mass defect". [6]

  3. Potential energy - Wikipedia

    en.wikipedia.org/wiki/Potential_energy

    There are various types of potential energy, each associated with a particular type of force. For example, the work of an elastic force is called elastic potential energy; work of the gravitational force is called gravitational potential energy; work of the Coulomb force is called electric potential energy; work of the strong nuclear force or weak nuclear force acting on the baryon charge is ...

  4. Nuclear reaction - Wikipedia

    en.wikipedia.org/wiki/Nuclear_reaction

    In a nuclear reaction, the total (relativistic) energy is conserved. The "missing" rest mass must therefore reappear as kinetic energy released in the reaction; its source is the nuclear binding energy. Using Einstein's mass-energy equivalence formula E = mc 2, the amount of energy released can be

  5. List of equations in nuclear and particle physics - Wikipedia

    en.wikipedia.org/wiki/List_of_equations_in...

    Mass number. A = (Relative) atomic mass = Mass number = Sum of protons and neutrons. N = Number of neutrons. Z = Atomic number = Number of protons = Number of electrons. A = Z + N {\displaystyle A=Z+N\,\!} Mass in nuclei. M'nuc = Mass of nucleus, bound nucleons. MΣ = Sum of masses for isolated nucleons.

  6. Nuclear binding energy - Wikipedia

    en.wikipedia.org/wiki/Nuclear_binding_energy

    The atomic binding energy is simply the amount of energy (and mass) released, when a collection of free nucleons are joined to form a nucleus. Nuclear binding energy can be computed from the difference in mass of a nucleus, and the sum of the masses of the number of free neutrons and protons that make up the nucleus.

  7. Semi-empirical mass formula - Wikipedia

    en.wikipedia.org/wiki/Semi-empirical_mass_formula

    Coulomb energy, the potential energy from each pair of protons. As this is a repelling force, the binding energy is reduced. Asymmetry energy (also called Pauli energy), which accounts for the Pauli exclusion principle. Unequal numbers of neutrons and protons imply filling higher energy levels for one type of particle, while leaving lower ...

  8. Nuclear shell model - Wikipedia

    en.wikipedia.org/wiki/Nuclear_shell_model

    In nuclear physics, atomic physics, and nuclear chemistry, the nuclear shell model utilizes the Pauli exclusion principle to model the structure of atomic nuclei in terms of energy levels. [ 1 ] The first shell model was proposed by Dmitri Ivanenko (together with E. Gapon) in 1932. The model was developed in 1949 following independent work by ...

  9. Binding energy - Wikipedia

    en.wikipedia.org/wiki/Binding_energy

    The gravitational binding energy of an object, such as a celestial body, is the energy required to expand the material to infinity. If a body with the mass and radius of Earth were made purely of hydrogen-1, then the gravitational binding energy of that body would be about 0.391658 eV per atom. If a hydrogen-1 body had the mass and radius of ...