Search results
Results from the WOW.Com Content Network
Christian Bohr, who was credited with the discovery of the effect in 1904. The Bohr effect is a phenomenon first described in 1904 by the Danish physiologist Christian Bohr. Hemoglobin's oxygen binding affinity (see oxygen–haemoglobin dissociation curve) is inversely related both to acidity and to the concentration of carbon dioxide. [1]
In 1904, Christian Bohr described the phenomenon, now called the Bohr effect, whereby hydrogen ions and carbon dioxide heterotopically decrease hemoglobin's oxygen-binding affinity. This regulation increases the efficiency of oxygen release by hemoglobin in tissues, like active muscle tissue, where rapid metabolization has produced relatively ...
In atomic physics, the Bohr model or Rutherford–Bohr model was the first successful model of the atom. Developed from 1911 to 1918 by Niels Bohr and building on Ernest Rutherford's nuclear model, it supplanted the plum pudding model of J. J. Thomson only to be replaced by the quantum atomic model in the 1920s.
The Bohr model of the chemical bond took into account the Coulomb repulsion - the electrons in the ring are at the maximum distance from each other. [2] Thus, according to this model, the methane molecule is a regular tetrahedron, in which center the carbon nucleus locates, and in the corners - the nucleus of hydrogen. The chemical bond between ...
As described by the Bohr effect (named after Christian Bohr, the father of Niels Bohr), the oxygen affinity of hemoglobin diminishes in the presence of carbon dioxide. [5] A heme unit of human carboxyhemoglobin, showing the carbonyl ligand at the apical position, trans to the histidine residue [22]
In 1904, Christian Bohr studied hemoglobin binding to oxygen under different conditions. [1] [2] When plotting hemoglobin saturation with oxygen as a function of the partial pressure of oxygen, he obtained a sigmoidal (or "S-shaped") curve. This indicates that the more oxygen is bound to hemoglobin, the easier it is for more oxygen to bind ...
The Bohr radius ( ) is a physical constant, approximately equal to the most probable distance between the nucleus and the electron in a hydrogen atom in its ground state. It is named after Niels Bohr, due to its role in the Bohr model of an atom. Its value is 5.291 772 105 44 (82) × 10 −11 m. [1] [2]
Bond valence calculations use parameters which are estimated after examining a large number of crystal structures of uranium oxides (and related uranium compounds); note that the oxidation states which this method provides are only a guide which assists in the understanding of a crystal structure. For uranium binding to oxygen the constants R 0 ...