enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Rotation of axes in two dimensions - Wikipedia

    en.wikipedia.org/wiki/Rotation_of_axes_in_two...

    In mathematics, a rotation of axes in two dimensions is a mapping from an xy-Cartesian coordinate system to an x′y′-Cartesian coordinate system in which the origin is kept fixed and the x′ and y′ axes are obtained by rotating the x and y axes counterclockwise through an angle .

  3. Sine and cosine transforms - Wikipedia

    en.wikipedia.org/wiki/Sine_and_cosine_transforms

    Another convention defines the cosine transform as [3] = ⁡ and the sine transform as () = ⁡ using as the transformation variable. And while t {\displaystyle t} is typically used to represent the time domain, x {\displaystyle x} is often instead used to represent a spatial domain when transforming to spatial frequencies.

  4. List of common coordinate transformations - Wikipedia

    en.wikipedia.org/wiki/List_of_common_coordinate...

    Note: solving for ′ returns the resultant angle in the first quadrant (< <). To find , one must refer to the original Cartesian coordinate, determine the quadrant in which lies (for example, (3,−3) [Cartesian] lies in QIV), then use the following to solve for :

  5. Rotation matrix - Wikipedia

    en.wikipedia.org/wiki/Rotation_matrix

    If any one of these is changed (such as rotating axes instead of vectors, a passive transformation), then the inverse of the example matrix should be used, which coincides with its transpose. Since matrix multiplication has no effect on the zero vector (the coordinates of the origin), rotation matrices describe rotations about the origin.

  6. Rotation (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Rotation_(mathematics)

    They can be extended to represent rotations and transformations at the same time using homogeneous coordinates. Projective transformations are represented by 4 × 4 matrices. They are not rotation matrices, but a transformation that represents a Euclidean rotation has a 3 × 3 rotation matrix in the upper left corner.

  7. Inverse hyperbolic functions - Wikipedia

    en.wikipedia.org/wiki/Inverse_hyperbolic_functions

    The principal value of the inverse hyperbolic sine is given by ⁡ = ⁡ (+ +). The argument of the square root is a non-positive real number, if and only if z belongs to one of the intervals [i, +i∞) and (−i∞, −i] of the imaginary axis. If the argument of the logarithm is real, then it is positive.

  8. List of trigonometric identities - Wikipedia

    en.wikipedia.org/wiki/List_of_trigonometric...

    Ptolemy's theorem states that the sum of the products of the lengths of opposite sides is equal to the product of the lengths of the diagonals. When those side-lengths are expressed in terms of the sin and cos values shown in the figure above, this yields the angle sum trigonometric identity for sine: sin(α + β) = sin α cos β + cos α sin β.

  9. Rectangular function - Wikipedia

    en.wikipedia.org/wiki/Rectangular_function

    Plot of normalized ⁡ function (i.e. ⁡ ()) with its spectral frequency components.. The unitary Fourier transforms of the rectangular function are [2] ⁡ = ⁡ = ⁡ (), using ordinary frequency f, where is the normalized form [10] of the sinc function and ⁡ = ⁡ (/) / = ⁡ (/), using angular frequency , where is the unnormalized form of the sinc function.