Search results
Results from the WOW.Com Content Network
A hydrogen bond is an extreme form of dipole-dipole bonding, referring to the attraction between a hydrogen atom that is bonded to an element with high electronegativity, usually nitrogen, oxygen, or fluorine. [4] The hydrogen bond is often described as a strong electrostatic dipole–dipole interaction.
A hydrogen bond (H-bond), is a specific type of interaction that involves dipole–dipole attraction between a partially positive hydrogen atom and a highly electronegative, partially negative oxygen, nitrogen, sulfur, or fluorine atom (not covalently bound to said hydrogen atom). It is not a covalent bond, but instead is classified as a strong ...
Hydrogen bonds arise from a combination of electrostatics (multipole-multipole and multipole-induced multipole interactions), covalency (charge transfer by orbital overlap), and dispersion (London forces). [5] In weaker hydrogen bonds, [13] hydrogen atoms tend to bond to elements such as sulfur (S) or chlorine (Cl); even carbon (C) can serve as ...
A hydrogen bond is a specific dipole where a hydrogen atom has a partial positive charge (δ+) to due a neighboring electronegative atom or functional group. [9] [10] Hydrogen bonds are amongst the strong intermolecular interactions know other than ion-dipole interactions. [10]
The bond dipole moments do not cancel, so that the molecule forms a molecular dipole with its negative pole at the oxygen and its positive pole midway between the two hydrogen atoms. In the figure each bond joins the central O atom with a negative charge (red) to an H atom with a positive charge (blue).
The source of adhesive forces, according to the dispersive adhesion mechanism, is the weak interactions that occur between molecules close together. [2] These interactions include London dispersion forces, Keesom forces, Debye forces and hydrogen bonds. Individually, these attractions are not very strong, but when summed over the bulk of a ...
In physisorption, perturbation of the electronic states of adsorbent and adsorbate is minimal. The adsorption forces include London Forces, dipole-dipole attractions, dipole-induced attraction and "hydrogen bonding." For chemisorption, changes in the electronic states may be detectable by suitable physical means, in other words, chemical bonding.
Van der Waals forces are independent of temperature except for dipole-dipole interactions. In low molecular weight alcohols, the hydrogen-bonding properties of their polar hydroxyl group dominate other weaker van der Waals interactions. In higher molecular weight alcohols, the properties of the nonpolar hydrocarbon chain(s) dominate and ...