Search results
Results from the WOW.Com Content Network
Eliminate ambiguous or non-significant zeros by using Scientific Notation: For example, 1300 with three significant figures becomes 1.30 × 10 3. Likewise 0.0123 can be rewritten as 1.23 × 10 −2. The part of the representation that contains the significant figures (1.30 or 1.23) is known as the significand or mantissa.
Probability bounds analysis gives the same answer as interval analysis does when only range information is available. It also gives the same answers as Monte Carlo simulation does when information is abundant enough to precisely specify input distributions and their dependencies. Thus, it is a generalization of both interval analysis and ...
(1) The Type I bias equations 1.1 and 1.2 are not affected by the sample size n. (2) Eq(1.4) is a re-arrangement of the second term in Eq(1.3). (3) The Type II bias and the variance and standard deviation all decrease with increasing sample size, and they also decrease, for a given sample size, when x's standard deviation σ becomes small ...
The uncertainty theory invented by Baoding Liu [1] is a branch of mathematics based on normality, monotonicity, self-duality, countable subadditivity, and product measure axioms. [ clarification needed ]
An approach to inverse uncertainty quantification is the modular Bayesian approach. [7] [17] The modular Bayesian approach derives its name from its four-module procedure. Apart from the current available data, a prior distribution of unknown parameters should be assigned. Module 1: Gaussian process modeling for the computer model
Relative uncertainty is the measurement uncertainty relative to the magnitude of a particular single choice for the value for the measured quantity, when this choice is nonzero. This particular single choice is usually called the measured value, which may be optimal in some well-defined sense (e.g., a mean, median, or mode). Thus, the relative ...
Any non-linear differentiable function, (,), of two variables, and , can be expanded as + +. If we take the variance on both sides and use the formula [11] for the variance of a linear combination of variables (+) = + + (,), then we obtain | | + | | +, where is the standard deviation of the function , is the standard deviation of , is the standard deviation of and = is the ...
Arthur P. Dempster at the Workshop on Theory of Belief Functions (Brest, 1 April 2010).. The theory of belief functions, also referred to as evidence theory or Dempster–Shafer theory (DST), is a general framework for reasoning with uncertainty, with understood connections to other frameworks such as probability, possibility and imprecise probability theories.