Search results
Results from the WOW.Com Content Network
in the condensation of the water-vapour of the air on the cold surface of a glass; in the capillarity of hair, wool, cotton, wood shavings, etc.; in the imbibition of water from the air by gelatine; in the deliquescence of common salt; in the absorption of water from the air by concentrated sulphuric acid; in the behaviour of quicklime". [4]
This gradient of water potential causes endosmosis. The endosmosis of water continues until the water potential both in the root and soil becomes equal. It is the absorption of minerals that utilise metabolic energy, but not water absorption. Hence, the absorption of water is indirectly an active process in a plant's life.
Water moves in soil under the influence of gravity, osmosis and capillarity. [7] When water enters the soil, it displaces air from interconnected macropores by buoyancy, and breaks aggregates into which air is entrapped, a process called slaking. [8] The rate at which a soil can absorb water depends on the soil and its other conditions.
A fourth term, loam, is used to describe equal properties of sand, silt, and clay in a soil sample, and lends to the naming of even more classifications, e.g. "clay loam" or "silt loam". Determining soil texture is often aided with the use of a soil texture triangle plot. [5] An example of a soil triangle is found on the right side of the page.
All plants, including crop, require air (specifically, oxygen) to respire, produce energy, and keep their cells alive. In agriculture, waterlogging typically blocks air from getting to the roots. [3] With the exception of rice (Oryza sativa), [4] [5] most crops like maize and potato, [6] [7] [8] are therefore highly intolerant to waterlogging.
Water retention curve is the relationship between the water content, θ, and the soil water potential, ψ. The soil moisture curve is characteristic for different types of soil, and is also called the soil moisture characteristic. It is used to predict the soil water storage, water supply to the plants (field capacity) and soil aggregate stability.
The biotic pump theory may be able to help us better understand the role forests have on the water cycle. The biotic pump is a theoretical concept that shows how forests create and control winds coming up from the ocean and in doing so bring water to the forests further inland.
Pores (the spaces that exist between soil particles) provide for the passage and/or retention of gasses and moisture within the soil profile.The soil's ability to retain water is strongly related to particle size; water molecules hold more tightly to the fine particles of a clay soil than to coarser particles of a sandy soil, so clays generally retain more water. [2]