enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Merge algorithm - Wikipedia

    en.wikipedia.org/wiki/Merge_algorithm

    In the merge sort algorithm, this subroutine is typically used to merge two sub-arrays A[lo..mid], A[mid+1..hi] of a single array A. This can be done by copying the sub-arrays into a temporary array, then applying the merge algorithm above. [1] The allocation of a temporary array can be avoided, but at the expense of speed and programming ease.

  3. Merge (linguistics) - Wikipedia

    en.wikipedia.org/wiki/Merge_(linguistics)

    This recursive property of Merge has been claimed to be a fundamental characteristic that distinguishes language from other cognitive faculties. As Noam Chomsky (1999) puts it, Merge is "an indispensable operation of a recursive system ... which takes two syntactic objects A and B and forms the new object G={A,B}" (p. 2). [1]

  4. Divide-and-conquer algorithm - Wikipedia

    en.wikipedia.org/wiki/Divide-and-conquer_algorithm

    An early two-subproblem D&C algorithm that was specifically developed for computers and properly analyzed is the merge sort algorithm, invented by John von Neumann in 1945. [ 7 ] Another notable example is the algorithm invented by Anatolii A. Karatsuba in 1960 [ 8 ] that could multiply two n - digit numbers in O ( n log 23 ...

  5. Comparison of programming languages (associative array)

    en.wikipedia.org/wiki/Comparison_of_programming...

    The user can search for elements in an associative array, and delete elements from the array. The following shows how multi-dimensional associative arrays can be simulated in standard AWK using concatenation and the built-in string-separator variable SUBSEP:

  6. Linked list - Wikipedia

    en.wikipedia.org/wiki/Linked_list

    [1] LISP, standing for list processor, was created by John McCarthy in 1958 while he was at MIT and in 1960 he published its design in a paper in the Communications of the ACM, entitled "Recursive Functions of Symbolic Expressions and Their Computation by Machine, Part I". One of LISP's major data structures is the linked list.

  7. Mutual recursion - Wikipedia

    en.wikipedia.org/wiki/Mutual_recursion

    These examples reduce easily to a single recursive function by inlining the forest function in the tree function, which is commonly done in practice: directly recursive functions that operate on trees sequentially process the value of the node and recurse on the children within one function, rather than dividing these into two separate functions.

  8. k-way merge algorithm - Wikipedia

    en.wikipedia.org/wiki/K-way_merge_algorithm

    In computer science, k-way merge algorithms or multiway merges are a specific type of sequence merge algorithms that specialize in taking in k sorted lists and merging them into a single sorted list. These merge algorithms generally refer to merge algorithms that take in a number of sorted lists greater than two.

  9. Associative array - Wikipedia

    en.wikipedia.org/wiki/Associative_array

    In mathematical terms, an associative array is a function with finite domain. [1] It supports 'lookup', 'remove', and 'insert' operations. The dictionary problem is the classic problem of designing efficient data structures that implement associative arrays. [2] The two major solutions to the dictionary problem are hash tables and search trees.