Search results
Results from the WOW.Com Content Network
Computable Document Format (CDF) is an electronic document format [1] designed to allow authoring dynamically generated, interactive content. [2] CDF was created by Wolfram Research , and CDF files can be created using Mathematica . [ 3 ]
The inverse cumulative distribution function (quantile function) of the logistic distribution is a generalization of the logit function. Its derivative is called the quantile density function. They are defined as follows: (;,) = + ().
It represents the width of a probability density function (PDF) in which a higher modulus is a characteristic of a narrower distribution of values. Use case examples include biological and brittle material failure analysis , where modulus is used to describe the variability of failure strength for materials.
Because of the factorial function in the denominator of the PDF and CDF, the Erlang distribution is only defined when the parameter k is a positive integer. In fact, this distribution is sometimes called the Erlang- k distribution (e.g., an Erlang-2 distribution is an Erlang distribution with k = 2 {\displaystyle k=2} ).
Unlike the more commonly used Weibull distribution, it can have a non-monotonic hazard function: when >, the hazard function is unimodal (when ≤ 1, the hazard decreases monotonically). The fact that the cumulative distribution function can be written in closed form is particularly useful for analysis of survival data with censoring . [ 9 ]
The expectation of conditioned on the event that lies in an interval [,] is given by [< <] = () (), where and respectively are the density and the cumulative distribution function of . For b = ∞ {\textstyle b=\infty } this is known as the inverse Mills ratio .
The cumulative distribution function (shown as F(x)) gives the p values as a function of the q values. The quantile function does the opposite: it gives the q values as a function of the p values. Note that the portion of F(x) in red is a horizontal line segment.
Cumulative distribution function for the exponential distribution Cumulative distribution function for the normal distribution. In probability theory and statistics, the cumulative distribution function (CDF) of a real-valued random variable, or just distribution function of , evaluated at , is the probability that will take a value less than or equal to .