Search results
Results from the WOW.Com Content Network
If k = +1, then a is the radius of curvature of the universe. If k = 0, then a may be fixed to any arbitrary positive number at one particular time. If k = −1, then (loosely speaking) one can say that i · a is the radius of curvature of the universe. a is the scale factor which is taken to be 1 at the present time.
Zero curvature (flat) – a drawn triangle's angles add up to 180° and the Pythagorean theorem holds; such 3-dimensional space is locally modeled by Euclidean space E 3. Positive curvature – a drawn triangle's angles add up to more than 180°; such 3-dimensional space is locally modeled by a region of a 3-sphere S 3.
Alternatively, as before, k may be taken to belong to the set {−1 ,0, +1} (for negative, zero, and positive curvature respectively). Then r is unitless and a(t) has units of length. When k = ±1, a(t) is the radius of curvature of the space, and may also be written R(t). Note that when k = +1, r is essentially a third angle along with θ and φ.
Curved spaces play an essential role in general relativity, where gravity is often visualized as curved spacetime. [2] The Friedmann–Lemaître–Robertson–Walker metric is a curved metric which forms the current foundation for the description of the expansion of the universe and the shape of the universe.
In mathematical physics, n-dimensional de Sitter space (often denoted dS n) is a maximally symmetric Lorentzian manifold with constant positive scalar curvature.It is the Lorentzian [further explanation needed] analogue of an n-sphere (with its canonical Riemannian metric).
The local geometry of the universe is determined by whether the relative density Ω is less than, equal to or greater than 1. From top to bottom: a spherical universe with greater than critical density (Ω>1, k>0); a hyperbolic, underdense universe (Ω<1, k<0); and a flat universe with exactly the critical density (Ω=1, k=0).
In the theory of general relativity, which describes gravity and cosmology, the idea is slightly generalised to the "curvature of spacetime"; in relativity theory spacetime is a pseudo-Riemannian manifold. Once a time coordinate is defined, the three-dimensional space corresponding to a particular time is generally a curved Riemannian manifold ...
In general relativity, gravity can be regarded as not a force but a consequence of a curved spacetime geometry where the source of curvature is the stress–energy tensor (representing matter, for instance). Thus, for example, the path of a planet orbiting a star is the projection of a geodesic of the curved four-dimensional (4-D) spacetime ...