enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Lilliefors test - Wikipedia

    en.wikipedia.org/wiki/Lilliefors_test

    Lilliefors test is a normality test based on the Kolmogorov–Smirnov test. It is used to test the null hypothesis that data come from a normally distributed population, when the null hypothesis does not specify which normal distribution; i.e., it does not specify the expected value and variance of the distribution. [ 1 ]

  3. Normality test - Wikipedia

    en.wikipedia.org/wiki/Normality_test

    A 2011 study concludes that Shapiro–Wilk has the best power for a given significance, followed closely by Anderson–Darling when comparing the Shapiro–Wilk, Kolmogorov–Smirnov, Lilliefors, and Anderson–Darling tests. [1] Some published works recommend the Jarque–Bera test, [2] [3] but the test has weakness.

  4. Type I and type II errors - Wikipedia

    en.wikipedia.org/wiki/Type_I_and_type_II_errors

    In addition, we suppose that the measurements X 1, X 2, X 3 are modeled as normal distribution N(μ,2). Then, T should follow N(μ,2/) and the parameter μ represents the true speed of passing vehicle. In this experiment, the null hypothesis H 0 and the alternative hypothesis H 1 should be H 0: μ=120 against H 1: μ>120.

  5. Repeated measures design - Wikipedia

    en.wikipedia.org/wiki/Repeated_measures_design

    The F statistic is the same as in the Standard Univariate ANOVA F test, but is associated with a more accurate p-value. This correction is done by adjusting the degrees of freedom downward for determining the critical F value. Two corrections are commonly used: the Greenhouse–Geisser correction and the Huynh–Feldt

  6. Shapiro–Wilk test - Wikipedia

    en.wikipedia.org/wiki/Shapiro–Wilk_test

    The Shapiro–Wilk test tests the null hypothesis that a sample x 1, ..., x n came from a normally distributed population. The test statistic is = (= ()) = (¯), where with parentheses enclosing the subscript index i is the ith order statistic, i.e., the ith-smallest number in the sample (not to be confused with ).

  7. False discovery rate - Wikipedia

    en.wikipedia.org/wiki/False_discovery_rate

    This created a need within many scientific communities to abandon FWER and unadjusted multiple hypothesis testing for other ways to highlight and rank in publications those variables showing marked effects across individuals or treatments that would otherwise be dismissed as non-significant after standard correction for multiple tests.

  8. Hubert Lilliefors - Wikipedia

    en.wikipedia.org/wiki/Hubert_Lilliefors

    Hubert Whitman Lilliefors (June 14, 1928 – February 23, 2008 in Bethesda, Maryland) was an American statistician, noted for his introduction of the Lilliefors test. Lilliefors received a BA in mathematics from George Washington University in 1952 [ 1 ] and his PhD at the George Washington University in 1964 under the supervision of Solomon ...

  9. Instrumental variables estimation - Wikipedia

    en.wikipedia.org/wiki/Instrumental_variables...

    The standard IV estimator can recover local average treatment effects (LATE) rather than average treatment effects (ATE). [1] Imbens and Angrist (1994) demonstrate that the linear IV estimate can be interpreted under weak conditions as a weighted average of local average treatment effects, where the weights depend on the elasticity of the ...