Search results
Results from the WOW.Com Content Network
A priority queue is an abstract data type like a list or a map; just as a list can be implemented with a linked list or with an array, a priority queue can be implemented with a heap or another method such as an ordered array.
This makes the min-max heap a very useful data structure to implement a double-ended priority queue. Like binary min-heaps and max-heaps, min-max heaps support logarithmic insertion and deletion and can be built in linear time. [3] Min-max heaps are often represented implicitly in an array; [4] hence it's referred to as an implicit data structure.
In computer science, a leftist tree or leftist heap is a priority queue implemented with a variant of a binary heap. Every node x has an s-value which is the distance to the nearest leaf in subtree rooted at x. [1] In contrast to a binary heap, a leftist tree attempts to be very unbalanced.
A bucket queue is a data structure that implements the priority queue abstract data type: it maintains a dynamic collection of elements with numerical priorities and allows quick access to the element with minimum (or maximum) priority. In the bucket queue, the priorities must be integers, and it is particularly suited to applications in which ...
A van Emde Boas tree (Dutch pronunciation: [vɑn ˈɛmdə ˈboːɑs]), also known as a vEB tree or van Emde Boas priority queue, is a tree data structure which implements an associative array with m-bit integer keys. It was invented by a team led by Dutch computer scientist Peter van Emde Boas in 1975. [1]
In computer science, a Fibonacci heap is a data structure for priority queue operations, consisting of a collection of heap-ordered trees.It has a better amortized running time than many other priority queue data structures including the binary heap and binomial heap.
In computer science, a binomial heap is a data structure that acts as a priority queue.It is an example of a mergeable heap (also called meldable heap), as it supports merging two heaps in logarithmic time.
Earliest deadline first (EDF) or least time to go is a dynamic priority scheduling algorithm used in real-time operating systems to place processes in a priority queue. Whenever a scheduling event occurs (task finishes, new task released, etc.) the queue will be searched for the process closest to its deadline.