Search results
Results from the WOW.Com Content Network
Slip ratio is a means of calculating and expressing the slipping behavior of the wheel of an automobile.It is of fundamental importance in the field of vehicle dynamics, as it allows to understand the relationship between the deformation of the tire and the longitudinal forces (i.e. the forces responsible for forward acceleration and braking) acting upon it.
In (automotive) vehicle dynamics, slip is the relative motion between a tire and the road surface it is moving on. This slip can be generated either by the tire's rotational speed being greater or less than the free-rolling speed (usually described as percent slip), or by the tire's plane of rotation being at an angle to its direction of motion (referred to as slip angle).
The ratios between the slip angles of the front and rear axles (a function of the slip angles of the front and rear tires respectively) will determine the vehicle's behavior in a given turn. If the ratio of front to rear slip angles is greater than 1:1, the vehicle will tend to understeer, while a ratio of less than 1:1 will produce oversteer. [2]
Vehicle dynamics is the study of vehicle motion, e.g., how a vehicle's forward movement changes in response to driver inputs, propulsion system outputs, ambient conditions, air/surface/water conditions, etc. Vehicle dynamics is a part of engineering primarily based on classical mechanics.
'Deflected' tread path, sideslip velocity and slip angle Graph of cornering force vs slip angle. Cornering force or side force is the lateral (i.e., parallel to wheel axis) force produced by a vehicle tire during cornering. [1] Cornering force is generated by tire slip and is proportional to slip angle at low slip angles.
Self aligning torque , slip angle , and camber angle are also shown. Self aligning torque ( SAT ), also known as aligning torque or aligning moment ( Mz , moment about the z direction ), is the torque that a tire creates as it rolls along, which tends to steer it, i.e. rotate it around its vertical axis.
Hans Bastiaan Pacejka (12 September 1934 – 17 September 2017) [1] was an expert in vehicle system dynamics and particularly in tire dynamics, fields in which his works are now standard references. [ 2 ] [ 3 ] He was Professor emeritus at Delft University of Technology in Delft , Netherlands .
The intention of Ackermann geometry is to avoid the need for tyres to slip sideways when following the path around a curve. [2] The geometrical solution to this is for all wheels to have their axles arranged as radii of circles with a common centre point. As the rear wheels are fixed, this centre point must be on a line extended from the rear axle.