enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Discriminant - Wikipedia

    en.wikipedia.org/wiki/Discriminant

    In mathematics, the discriminant of a polynomial is a quantity that depends on the coefficients and allows deducing some properties of the roots without computing them. More precisely, it is a polynomial function of the coefficients of the original polynomial. The discriminant is widely used in polynomial factoring, number theory, and algebraic ...

  3. Discriminant of an algebraic number field - Wikipedia

    en.wikipedia.org/wiki/Discriminant_of_an...

    The discriminant of K is 49 = 7 2. Accordingly, the volume of the fundamental domain is 7 and K is only ramified at 7. In mathematics, the discriminant of an algebraic number field is a numerical invariant that, loosely speaking, measures the size of the (ring of integers of the) algebraic number field.

  4. Algebraic number field - Wikipedia

    en.wikipedia.org/wiki/Algebraic_number_field

    For this converse the field discriminant is needed. This is the Dedekind discriminant theorem. In the example above, the discriminant of the number field () with x 3 − x − 1 = 0 is −23, and as we have seen the 23-adic place ramifies. The Dedekind discriminant tells us it is the only ultrametric place that does.

  5. Cubic equation - Wikipedia

    en.wikipedia.org/wiki/Cubic_equation

    The discriminant Δ of the cubic is the square of = () (), where a is the leading coefficient of the cubic, and r 1, r 2 and r 3 are the three roots of the cubic. As Δ {\displaystyle {\sqrt {\Delta }}} changes of sign if two roots are exchanged, Δ {\displaystyle {\sqrt {\Delta }}} is fixed by the Galois group only if the Galois group is A 3 .

  6. Quadratic formula - Wikipedia

    en.wikipedia.org/wiki/Quadratic_formula

    In elementary algebra, the quadratic formula is a closed-form expression describing the solutions of a quadratic equation. ... If the discriminant is negative, ...

  7. Minkowski's bound - Wikipedia

    en.wikipedia.org/wiki/Minkowski's_bound

    Let D be the discriminant of the field, n be the degree of K over , and = be the number of complex embeddings where is the number of real embeddings.Then every class in the ideal class group of K contains an integral ideal of norm not exceeding Minkowski's bound

  8. Hessian matrix - Wikipedia

    en.wikipedia.org/wiki/Hessian_matrix

    The determinant of the Hessian at is called, in some contexts, a discriminant. If this determinant is zero then x {\displaystyle \mathbf {x} } is called a degenerate critical point of f , {\displaystyle f,} or a non-Morse critical point of f . {\displaystyle f.}

  9. Quadratic equation - Wikipedia

    en.wikipedia.org/wiki/Quadratic_equation

    Discriminant signs In the quadratic formula, the expression underneath the square root sign is called the discriminant of the quadratic equation, and is often represented using an upper case D or an upper case Greek delta : [ 13 ] Δ = b 2 − 4 a c . {\displaystyle \Delta =b^{2}-4ac.}