enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Pascal's triangle - Wikipedia

    en.wikipedia.org/wiki/Pascal's_triangle

    In mathematics, Pascal's triangle is an infinite triangular array of the binomial coefficients which play a crucial role in probability theory, combinatorics, and algebra.In much of the Western world, it is named after the French mathematician Blaise Pascal, although other mathematicians studied it centuries before him in Persia, [1] India, [2] China, Germany, and Italy.

  3. APL syntax and symbols - Wikipedia

    en.wikipedia.org/wiki/APL_syntax_and_symbols

    The following is an APL one-liner function to visually depict Pascal's triangle: Pascal ← { ' ' @ ( 0 =⊢ ) ↑ 0 , ⍨¨ a ⌽ ¨ ⌽∊ ¨ 0 , ¨¨ a ∘ ! ¨ a ← ⌽⍳ ⍵ } ⍝ Create a one-line user function called Pascal Pascal 7 ⍝ Run function Pascal for seven rows and show the results below: 1 1 2 1 3 3 1 4 6 4 1 5 10 10 5 1 6 ...

  4. Binomial coefficient - Wikipedia

    en.wikipedia.org/wiki/Binomial_coefficient

    The binomial coefficients can be arranged to form Pascal's triangle, in which each entry is the sum of the two immediately above. Visualisation of binomial expansion up to the 4th power In mathematics , the binomial coefficients are the positive integers that occur as coefficients in the binomial theorem .

  5. Stirling numbers of the first kind - Wikipedia

    en.wikipedia.org/wiki/Stirling_numbers_of_the...

    Below is a triangular array of unsigned values for the Stirling numbers of the first kind, similar in form to Pascal's triangle. These values are easy to generate using the recurrence relation in the previous section.

  6. Sierpiński triangle - Wikipedia

    en.wikipedia.org/wiki/Sierpiński_triangle

    A level-5 approximation to a Sierpiński triangle obtained by shading the first 2 5 (32) levels of a Pascal's triangle white if the binomial coefficient is even and black otherwise If one takes Pascal's triangle with 2 n {\displaystyle 2^{n}} rows and colors the even numbers white, and the odd numbers black, the result is an approximation to ...

  7. Trinomial triangle - Wikipedia

    en.wikipedia.org/wiki/Trinomial_triangle

    The middle entries of the trinomial triangle 1, 1, 3, 7, 19, 51, 141, 393, 1107, 3139, … (sequence A002426 in the OEIS) were studied by Euler and are known as central trinomial coefficients. The only known prime central trinomial coefficients are 3, 7 and 19 at n = 2, 3 and 4. The -th central trinomial coefficient is given by

  8. Pascal matrix - Wikipedia

    en.wikipedia.org/wiki/Pascal_matrix

    In matrix theory and combinatorics, a Pascal matrix is a matrix (possibly infinite) containing the binomial coefficients as its elements. It is thus an encoding of Pascal's triangle in matrix form. There are three natural ways to achieve this: as a lower-triangular matrix , an upper-triangular matrix , or a symmetric matrix .

  9. Pascal's simplex - Wikipedia

    en.wikipedia.org/wiki/Pascal's_simplex

    The first five layers of Pascal's 3-simplex (Pascal's pyramid). Each face (orange grid) is Pascal's 2-simplex (Pascal's triangle). Arrows show derivation of two example terms. In mathematics, Pascal's simplex is a generalisation of Pascal's triangle into arbitrary number of dimensions, based on the multinomial theorem.