Search results
Results from the WOW.Com Content Network
In mathematics, a relation denotes some kind of relationship between two objects in a set, which may or may not hold. [1] As an example, " is less than " is a relation on the set of natural numbers ; it holds, for instance, between the values 1 and 3 (denoted as 1 < 3 ), and likewise between 3 and 4 (denoted as 3 < 4 ), but not between the ...
In mathematics, a ternary equivalence relation is a kind of ternary relation analogous to a binary equivalence relation. A ternary equivalence relation is symmetric, reflexive, and transitive, where those terms are meant in the sense defined below. The classic example is the relation of collinearity among three points in Euclidean space.
The term finite mathematics is sometimes applied to parts of the field of discrete mathematics that deals with finite sets, particularly those areas relevant to business. Research in discrete mathematics increased in the latter half of the twentieth century partly due to the development of digital computers which operate in "discrete" steps and ...
The relation defined by xRy if x is even and y is odd is both transitive and antitransitive. [15] The relation defined by xRy if x is the successor number of y is both intransitive [16] and antitransitive. [17] Unexpected examples of intransitivity arise in situations such as political questions or group preferences. [18]
In mathematics, a ternary relation or triadic relation is a finitary relation in which the number of places in the relation is three. Ternary relations may also be referred to as 3-adic , 3-ary , 3-dimensional , or 3-place .
Many mathematical problems have been stated but not yet solved. These problems come from many areas of mathematics, such as theoretical physics, computer science, algebra, analysis, combinatorics, algebraic, differential, discrete and Euclidean geometries, graph theory, group theory, model theory, number theory, set theory, Ramsey theory, dynamical systems, and partial differential equations.
In mathematics, the transitive closure R + of a homogeneous binary relation R on a set X is the smallest relation on X that contains R and is transitive.For finite sets, "smallest" can be taken in its usual sense, of having the fewest related pairs; for infinite sets R + is the unique minimal transitive superset of R.
where ¯ is the complementary relation of the identity relation and is the converse relation of . Introducing progressions, Russell invoked the axiom of connection: Whenever a series is originally given by a transitive asymmetrical relation, we can express connection by the condition that any two terms of our series are to have the generating ...