enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Closeness (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Closeness_(mathematics)

    Closeness is a basic concept in topology and related areas in mathematics.Intuitively, we say two sets are close if they are arbitrarily near to each other. The concept can be defined naturally in a metric space where a notion of distance between elements of the space is defined, but it can be generalized to topological spaces where we have no concrete way to measure distances.

  3. Closure (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Closure_(mathematics)

    Conversely, if closed sets are given and every intersection of closed sets is closed, then one can define a closure operator C such that () is the intersection of the closed sets containing X. This equivalence remains true for partially ordered sets with the greatest-lower-bound property , if one replace "closed sets" by "closed elements" and ...

  4. Closure (topology) - Wikipedia

    en.wikipedia.org/wiki/Closure_(topology)

    The definition of a point of closure of a set is closely related to the definition of a limit point of a set.The difference between the two definitions is subtle but important – namely, in the definition of a limit point of a set , every neighbourhood of must contain a point of other than itself, i.e., each neighbourhood of obviously has but it also must have a point of that is not equal to ...

  5. Closed set - Wikipedia

    en.wikipedia.org/wiki/Closed_set

    In geometry, topology, and related branches of mathematics, a closed set is a set whose complement is an open set. [1] [2] In a topological space, a closed set can be defined as a set which contains all its limit points. In a complete metric space, a closed set is a set which is closed under the limit operation.

  6. Near sets - Wikipedia

    en.wikipedia.org/wiki/Near_sets

    From a spatial point of view, nearness (a.k.a. proximity) is considered a generalization of set intersection.For disjoint sets, a form of nearness set intersection is defined in terms of a set of objects (extracted from disjoint sets) that have similar features within some tolerance (see, e.g., §3 in).

  7. Metric space - Wikipedia

    en.wikipedia.org/wiki/Metric_space

    One example of a compact space is the closed interval [0, 1]. Compactness is important for similar reasons to completeness: it makes it easy to find limits. Another important tool is Lebesgue's number lemma , which shows that for any open cover of a compact space, every point is relatively deep inside one of the sets of the cover.

  8. Dense set - Wikipedia

    en.wikipedia.org/wiki/Dense_set

    In topology and related areas of mathematics, a subset A of a topological space X is said to be dense in X if every point of X either belongs to A or else is arbitrarily "close" to a member of A — for instance, the rational numbers are a dense subset of the real numbers because every real number either is a rational number or has a rational number arbitrarily close to it (see Diophantine ...

  9. Open and closed maps - Wikipedia

    en.wikipedia.org/wiki/Open_and_closed_maps

    In mathematics, more specifically in topology, an open map is a function between two topological spaces that maps open sets to open sets. [1] [2] [3] That is, a function : is open if for any open set in , the image is open in . Likewise, a closed map is a function that maps closed sets to closed sets.