Search results
Results from the WOW.Com Content Network
A totient number is a value of Euler's totient function: that is, an m for which there is at least one n for which φ(n) = m. The valency or multiplicity of a totient number m is the number of solutions to this equation. [41] A nontotient is a natural number which is not a totient number. Every odd integer exceeding 1 is trivially a nontotient.
In 1736, Leonhard Euler published a proof of Fermat's little theorem [1] (stated by Fermat without proof), which is the restriction of Euler's theorem to the case where n is a prime number. Subsequently, Euler presented other proofs of the theorem, culminating with his paper of 1763, in which he proved a generalization to the case where n is ...
The degree of , or in other words the number of nth primitive roots of unity, is (), where is Euler's totient function. The fact that Φ n {\displaystyle \Phi _{n}} is an irreducible polynomial of degree φ ( n ) {\displaystyle \varphi (n)} in the ring Z [ x ] {\displaystyle \mathbb {Z} [x]} is a nontrivial result due to Gauss . [ 4 ]
In mathematics, a subset R of the integers is called a reduced residue system modulo n if: . gcd(r, n) = 1 for each r in R,R contains φ(n) elements,; no two elements of R are congruent modulo n.
Here φ is Euler's totient function. An equivalent definition is that a number n is cyclic if and only if any group of order n is cyclic. [3] Any prime number is clearly cyclic. All cyclic numbers are square-free. [4] Let n = p 1 p 2 … p k where the p i are distinct primes, then φ(n) = (p 1 − 1)(p 2 − 1)...(p k – 1).
Euler's theorem Euler's theorem states that if n and a are coprime positive integers, then a φ(n) is congruent to 1 mod n. Euler's theorem generalizes Fermat's little theorem. Euler's totient function For a positive integer n, Euler's totient function of n, denoted φ(n), is the number of integers coprime to n between 1 and n inclusive.
In number theory, the totient summatory function is a summatory function of Euler's totient function defined by ():= = (),.It is the number of ordered pairs of coprime integers (p,q), where 1 ≤ p ≤ q ≤ n.
The cototient of is defined as (), i.e. the number of positive integers less than or equal to that have at least one prime factor in common with .For example, the cototient of 6 is 4 since these four positive integers have a prime factor in common with 6: 2, 3, 4, 6.