Search results
Results from the WOW.Com Content Network
The Helmholtz equation has a variety of applications in physics and other sciences, including the wave equation, the diffusion equation, and the Schrödinger equation for a free particle. In optics, the Helmholtz equation is the wave equation for the electric field. [1] The equation is named after Hermann von Helmholtz, who studied it in 1860. [2]
In thermodynamics, the Helmholtz free energy (or Helmholtz energy) is a thermodynamic potential that measures the useful work obtainable from a closed thermodynamic system at a constant temperature . The change in the Helmholtz energy during a process is equal to the maximum amount of work that the system can perform in a thermodynamic process ...
Multiparameter equations of state are empirical equations of state that can be used to represent pure fluids with high accuracy. Multiparameter equations of state are empirical correlations of experimental data and are usually formulated in the Helmholtz free energy. The functional form of these models is in most parts not physically motivated.
The Gibbs–Helmholtz equation is a thermodynamic equation used to calculate changes in the Gibbs free energy of a system as a function of temperature. It was originally presented in an 1882 paper entitled " Die Thermodynamik chemischer Vorgänge " by Hermann von Helmholtz .
Kelvin-Helmholtz instabilities are visible in the atmospheres of planets and moons, such as in cloud formations on Earth or the Red Spot on Jupiter, and the atmospheres of the Sun and other stars. [1] Spatially developing 2D Kelvin-Helmholtz instability at low Reynolds number. Small perturbations, imposed at the inlet on the tangential velocity ...
The Helmholtz decomposition in three dimensions was first described in 1849 [9] by George Gabriel Stokes for a theory of diffraction. Hermann von Helmholtz published his paper on some hydrodynamic basic equations in 1858, [10] [11] which was part of his research on the Helmholtz's theorems describing the motion of fluid in the vicinity of vortex lines. [11]
Antoine equation; Bejan number; Bowen ratio; Bridgman's equations; Clausius–Clapeyron relation; Departure functions; Duhem–Margules equation; Ehrenfest equations; Gibbs–Helmholtz equation; Phase rule; Kopp's law; Noro–Frenkel law of corresponding states; Onsager reciprocal relations; Stefan number; Thermodynamics; Timeline of ...
The Kirchhoff–Helmholtz integral combines the Helmholtz equation with the Kirchhoff integral theorem [1] to produce a method applicable to acoustics, [2] seismology [3] and other disciplines involving wave propagation.