Search results
Results from the WOW.Com Content Network
The fourth step in the viral cycle is replication, which is defined by the rapid production of the viral genome. How a virus undergoes replication relies on the type of genetic material the virus possesses. Based on their genetic material, viruses will hijack the corresponding cellular machinery for said genetic material.
To enter the cells, proteins on the surface of the virus interact with proteins of the cell. Attachment, or adsorption, occurs between the viral particle and the host cell membrane. A hole forms in the cell membrane, then the virus particle or its genetic contents are released into the host cell, where replication of the viral genome may commence.
Lysogenic Cycle [9] An example of a virus that uses the lysogenic cycle to its advantage is the Herpes Simplex Virus. [10] After first entering the lytic cycle and infecting a human host, it enters the lysogenic cycle. This allows it to travel to the nervous system's sensory neurons and remain undetected for long periods of time.
In the lytic cycle, the viral DNA exists as a separate free floating molecule within the bacterial cell, and replicates separately from the host bacterial DNA, whereas in the lysogenic cycle, the viral DNA is integrated into the host genome. This is the key difference between the lytic and lysogenic cycles.
HA2 promotes fusion of the virus envelope and the endosome membranes. A minor virus envelope protein M2 acts as a ion channel thereby making the inside of the virion more acidic. As a result, the major envelope protein M1 dissociates from the nucleocapsid and vRNPs are translocated into the nucleus (STEP 2) via interaction between NP and ...
A viral infection does not always cause disease. A viral infection simply involves viral replication in the host, but disease is the damage caused by viral multiplication. [5] An individual who has a viral infection but does not display disease symptoms is known as a carrier. [17] Mechanisms by which viruses cause damage and disease to host cells
(A) When the host cell is only infected by a giant virus, the latter establishes a cytoplasmic virus factory to replicate and generates new virions, and the host cell is most likely lysed at the end of its replication cycle. (B) When the host cell is co-infected with a giant virus and its virophage, the latter parasitizes the giant virus factory.
Orthopoxvirus replication cycle. Viral replication is cytoplasmic. Entry into the host cell is achieved by attachment of the viral proteins to host glycosaminoglycans (GAGs), which mediate cellular endocytosis of the virus. Fusion of the viral envelope with the plasma membrane releases the viral core into the host cytoplasm.