Search results
Results from the WOW.Com Content Network
The aether in this theory is "a Lorentz-violating vector field" [1] unrelated to older luminiferous aether theories; the "Einstein" in the theory's name comes from its use of Einstein's general relativity equation. [2]
Some of these solutions are parametrised by one or more parameters. From a physical standpoint, knowing the solutions of the Einstein Field Equations allows highly-precise modelling of astrophysical phenomena, including black holes, neutron stars, and stellar systems.
Albert Einstein presented the theories of special relativity and general relativity in publications that either contained no formal references to previous literature, or referred only to a small number of his predecessors for fundamental results on which he based his theories, most notably to the work of Henri Poincaré and Hendrik Lorentz for special relativity, and to the work of David ...
In fluid dynamics, the tea leaf paradox is a phenomenon where tea leaves in a cup of tea migrate to the center and bottom of the cup after being stirred rather than being forced to the edges of the cup, as would be expected in a spiral centrifuge. The correct physical explanation of the paradox was for the first time given by James Thomson in 1857.
As historians such as John Stachel argue, Einstein's views on the "new aether" are not in conflict with his abandonment of the aether in 1905. As Einstein himself pointed out, no "substance" and no state of motion can be attributed to that new aether. [10] Einstein's use of the word "aether" found little support in the scientific community, and ...
In general relativity, a fluid solution is an exact solution of the Einstein field equation in which the gravitational field is produced entirely by the mass, momentum, and stress density of a fluid. In astrophysics , fluid solutions are often employed as stellar models , since a perfect gas can be thought of as a special case of a perfect fluid.
In general relativity, an exact solution is a (typically closed form) solution of the Einstein field equations whose derivation does not invoke simplifying approximations of the equations, though the starting point for that derivation may be an idealized case like a perfectly spherical shape of matter.
1903 – Olinto De Pretto presents his aether theory with some form of mass–energy equivalence. [15] It was described by a formula looking like Einstein’s E = mc 2, but with different meanings of the terms. 1903 – Frederick Thomas Trouton and H.R. Noble publish the results of their experiment with capacitors, showing no aether drift. [16 ...