enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Straightedge and compass construction - Wikipedia

    en.wikipedia.org/wiki/Straightedge_and_compass...

    In geometry, straightedge-and-compass construction – also known as ruler-and-compass construction, Euclidean construction, or classical construction – is the construction of lengths, angles, and other geometric figures using only an idealized ruler and a pair of compasses.

  3. Geometric Constructions - Wikipedia

    en.wikipedia.org/wiki/Geometric_Constructions

    Geometric Constructions is a mathematics textbook on constructible numbers, and more generally on using abstract algebra to model the sets of points that can be created through certain types of geometric construction, and using Galois theory to prove limits on the constructions that can be performed.

  4. Constructible polygon - Wikipedia

    en.wikipedia.org/wiki/Constructible_polygon

    The concept of constructibility as discussed in this article applies specifically to compass and straightedge constructions. More constructions become possible if other tools are allowed. The so-called neusis constructions, for example, make use of a marked ruler. The constructions are a mathematical idealization and are assumed to be done exactly.

  5. Mathematics of paper folding - Wikipedia

    en.wikipedia.org/wiki/Mathematics_of_paper_folding

    This construction is due to Peter Messer: [38] A square of paper is first creased into three equal strips as shown in the diagram. Then the bottom edge is positioned so the corner point P is on the top edge and the crease mark on the edge meets the other crease mark Q. The length PB will then be the cube root of 2 times the length of AP. [14]

  6. Constructible number - Wikipedia

    en.wikipedia.org/wiki/Constructible_number

    The square root of 2 is equal to the length of the hypotenuse of a right triangle with legs of length 1 and is therefore a constructible number. In geometry and algebra, a real number is constructible if and only if, given a line segment of unit length, a line segment of length | | can be constructed with compass and straightedge in a finite number of steps.

  7. Geometrography - Wikipedia

    en.wikipedia.org/wiki/Geometrography

    Cover of Lemoine's "Géométrographie" In the mathematical field of geometry, geometrography is the study of geometrical constructions. [1] The concepts and methods of geometrography were first expounded by Émile Lemoine (1840–1912), a French civil engineer and a mathematician, in a meeting of the French Association for the Advancement of the Sciences held at Oran in 1888.

  8. Neusis construction - Wikipedia

    en.wikipedia.org/wiki/Neusis_construction

    Neusis construction. In geometry, the neusis (νεῦσις; from Ancient Greek νεύειν (neuein) 'incline towards'; plural: νεύσεις, neuseis) is a geometric construction method that was used in antiquity by Greek mathematicians.

  9. Angle trisection - Wikipedia

    en.wikipedia.org/wiki/Angle_trisection

    The next construction is originally due to Archimedes, called a Neusis construction, i.e., that uses tools other than an un-marked straightedge. The diagrams we use show this construction for an acute angle, but it indeed works for any angle up to 180 degrees. This requires three facts from geometry (at right):