Search results
Results from the WOW.Com Content Network
In 1946, Arthur Burks used the terms mantissa and characteristic to describe the two parts of a floating-point number (Burks [11] et al.) by analogy with the then-prevalent common logarithm tables: the characteristic is the integer part of the logarithm (i.e. the exponent), and the mantissa is the fractional part.
The integer n is called the exponent and the real number m is called the significand or mantissa. [1] The term "mantissa" can be ambiguous where logarithms are involved, because it is also the traditional name of the fractional part of the common logarithm. If the number is negative then a minus sign precedes m, as in ordinary decimal notation.
binary real values are represented in a binary format that includes the mantissa, the base (2, 8, or 16), and the exponent; the special values NaN, -INF, +INF , and negative zero are also supported Multiple valid types ( VisibleString, PrintableString, GeneralString, UniversalString, UTF8String )
The arithmetical difference between two consecutive representable floating-point numbers which have the same exponent is called a unit in the last place (ULP). For example, if there is no representable number lying between the representable numbers 1.45a70c22 hex and 1.45a70c24 hex , the ULP is 2×16 −8 , or 2 −31 .
Then, the fractional part can be formulated as a difference: frac ( x ) = x − ⌊ x ⌋ , x > 0 {\displaystyle \operatorname {frac} (x)=x-\lfloor x\rfloor ,\;x>0} . The fractional part of logarithms , [ 2 ] specifically, is also known as the mantissa ; by contrast with the mantissa, the integral part of a logarithm is called its ...
The part of the representation that contains the significant figures (1.30 or 1.23) is known as the significand or mantissa. The digits in the base and exponent ( 10 3 or 10 −2 ) are considered exact numbers so for these digits, significant figures are irrelevant.
Shortcut Action; Navigate to the left tab [Navigate to the right tab ] Start a new email conversation N: Go to the inbox M: Go to Settings ; Search
Now we can read off the fraction and the exponent: the fraction is .01 2 and the exponent is −3. As illustrated in the pictures, the three fields in the IEEE 754 representation of this number are: sign = 0, because the number is positive. (1 indicates negative.) biased exponent = −3 + the "bias".