Search results
Results from the WOW.Com Content Network
The number 123.45 can be represented as a decimal floating-point number with the integer 12345 as the significand and a 10 −2 power term, also called characteristics, [11] [12] [13] where −2 is the exponent (and 10 is the base). Its value is given by the following arithmetic: 123.45 = 12345 × 10 −2. The same value can also be represented ...
The value distribution is similar to floating point, but the value-to-representation curve (i.e., the graph of the logarithm function) is smooth (except at 0). Conversely to floating-point arithmetic, in a logarithmic number system multiplication, division and exponentiation are simple to implement, but addition and subtraction are complex.
ARM processors support (via a floating-point control register bit) an "alternative half-precision" format, which does away with the special case for an exponent value of 31 (11111 2). [10] It is almost identical to the IEEE format, but there is no encoding for infinity or NaNs; instead, an exponent of 31 encodes normalized numbers in the range ...
If the mantissa is allowed to be 0-bit, a 1-bit float format would have a 1-bit exponent, and the only two values would be 0 and Inf. The exponent must be at least 1 bit or else it no longer makes sense as a float (it would just be a signed number). 4-bit floating point numbers — without the four special IEEE values — have found use in ...
Double-precision floating-point format (sometimes called FP64 or float64) is a floating-point number format, usually occupying 64 bits in computer memory; it represents a wide range of numeric values by using a floating radix point. Double precision may be chosen when the range or precision of single precision would be insufficient.
In a normal floating-point value, there are no leading zeros in the significand (also commonly called mantissa); rather, leading zeros are removed by adjusting the exponent (for example, the number 0.0123 would be written as 1.23 × 10 −2). Conversely, a denormalized floating point value has a significand with a leading digit of zero.
The integer n is called the exponent and the real number m is called the significand or mantissa. [1] The term "mantissa" can be ambiguous where logarithms are involved, because it is also the traditional name of the fractional part of the common logarithm. If the number is negative then a minus sign precedes m, as in ordinary decimal notation.
Mantissa (/ m æ n ˈ t ɪ s ə /) may refer to: Mantissa (logarithm), the fractional part of the common (base-10) logarithm; Significand (also commonly called mantissa), the significant digits of a floating-point number or a number in scientific notation; Mantissa (band) Mantissa, a 1982 novel by John Fowles; Mantissa College