Search results
Results from the WOW.Com Content Network
The first direct proof that nucleosynthesis occurs in stars was the astronomical observation that interstellar gas has become enriched with heavy elements as time passed. As a result, stars that were born from it late in the galaxy, formed with much higher initial heavy element abundances than those that had formed earlier.
Supernova nucleosynthesis is the nucleosynthesis of chemical elements in supernova explosions.. In sufficiently massive stars, the nucleosynthesis by fusion of lighter elements into heavier ones occurs during sequential hydrostatic burning processes called helium burning, carbon burning, oxygen burning, and silicon burning, in which the byproducts of one nuclear fuel become, after ...
The need for a physical description was already inspired by the relative abundances of the chemical elements in the solar system. Those abundances, when plotted on a graph as a function of the atomic number of the element, have a jagged sawtooth shape that varies by factors of tens of millions (see history of nucleosynthesis theory). [4]
The key parameter which allows one to calculate the effects of Big Bang nucleosynthesis is the baryon/photon number ratio, which is a small number of order 6 × 10 −10. This parameter corresponds to the baryon density and controls the rate at which nucleons collide and react; from this it is possible to calculate element abundances after ...
Scientists discovered a method to create element 116 using a titanium beam, paving the way for future synthesis of element 120, the "holy grail" of chemistry.
The stable alpha elements are: C, O, Ne, Mg, Si, and S. The elements Ar and Ca are "observationally stable". They are synthesized by alpha capture prior to the silicon fusing stage, that leads to Type II supernovae. Si and Ca are purely alpha process elements. Mg can be separately consumed by proton capture reactions.
In nuclear astrophysics, the rapid neutron-capture process, also known as the r-process, is a set of nuclear reactions that is responsible for the creation of approximately half of the atomic nuclei heavier than iron, the "heavy elements", with the other half produced by the p-process and s-process.
Get AOL Mail for FREE! Manage your email like never before with travel, photo & document views. Personalize your inbox with themes & tabs. You've Got Mail!