Search results
Results from the WOW.Com Content Network
Aldehydes and ketones can be reduced respectively to primary and secondary alcohols. In deoxygenation, the alcohol group can be further reduced and removed altogether by replacement with H. Two broad strategies exist for carbonyl reduction. One method, which is favored in industry, uses hydrogen as the reductant.
Deoxygenation is a chemical reaction involving the removal of oxygen atoms from a molecule. The term also refers to the removal of molecular oxygen (O 2 ) from gases and solvents, a step in air-free technique and gas purifiers .
The oxidation of primary alcohols to carboxylic acids normally proceeds via the corresponding aldehyde, which is transformed via an aldehyde hydrate (gem-diol, R-CH(OH) 2) by reaction with water. Thus, the oxidation of a primary alcohol at the aldehyde level without further oxidation to the carboxylic acid is possible by performing the reaction ...
In organic chemistry, the Schmidt reaction is an organic reaction in which an azide reacts with a carbonyl derivative, usually an aldehyde, ketone, or carboxylic acid, under acidic conditions to give an amine or amide, with expulsion of nitrogen.
The Barton–McCombie deoxygenation is an organic reaction in which a hydroxy functional group in an organic compound is replaced by a hydrogen to give an alkyl group. [1] [2] It is named after British chemists Sir Derek Harold Richard Barton and Stuart W. McCombie. The Barton-McCombie deoxygenation. This deoxygenation reaction is a radical ...
The direct oxidation of primary alcohols to carboxylic acids normally proceeds via the corresponding aldehyde, which is transformed via an aldehyde hydrate (R−CH(OH) 2) by reaction with water before it can be further oxidized to the carboxylic acid. Mechanism of oxidation of primary alcohols to carboxylic acids via aldehydes and aldehyde hydrates
In organic chemistry, the Myers deoxygenation reaction is an organic redox reaction that reduces an alcohol into an alkyl position by way of an arenesulfonyl hydrazine as a key intermediate. This name reaction is one of four discovered by Andrew Myers that are named after him; this reaction and the Myers allene synthesis reaction involve the ...
In organic chemistry, the Swern oxidation, named after Daniel Swern, is a chemical reaction whereby a primary or secondary alcohol (−OH) is oxidized to an aldehyde (−CH=O) or ketone (>C=O) using oxalyl chloride, dimethyl sulfoxide (DMSO) and an organic base, such as triethylamine.