Search results
Results from the WOW.Com Content Network
The coefficient of permeability varies with the void ratio as e/sup>/(1+e). For a given soil, the greater the void ratio, the higher the value of the coefficient of permeability. Here 'e' is the void ratio. Based on other concepts it has been established that the permeability of a soil varies as e 2 or e 3 /(1+e). Whatever may be the exact ...
Symbol used to represent in situ permeability tests in geotechnical drawings. In fluid mechanics, materials science and Earth sciences, the permeability of porous media (often, a rock or soil) is a measure of the ability for fluids (gas or liquid) to flow through the media; it is commonly symbolized as k.
In science and engineering, hydraulic conductivity (K, in SI units of meters per second), is a property of porous materials, soils and rocks, that describes the ease with which a fluid (usually water) can move through the pore space, or fracture network. [1]
Darcy's law is an equation that describes the flow of a fluid through a porous medium and through a Hele-Shaw cell.The law was formulated by Henry Darcy based on results of experiments [1] on the flow of water through beds of sand, forming the basis of hydrogeology, a branch of earth sciences.
Soil texture determines total volume of the smallest pores; [56] clay soils have smaller pores, but more total pore space than sands, [57] despite a much lower permeability. [58] Soil structure has a strong influence on the larger pores that affect soil aeration, water infiltration and drainage. [59]
The plasticity index of a particular soil specimen is defined as the difference between the liquid limit and the plastic limit of the specimen; it is an indicator of how much water the soil particles in the specimen can absorb, and correlates with many engineering properties like permeability, compressibility, shear strength and others ...
Most soils have a dry bulk density between 1.0 and 1.6 g/cm 3 but organic soil and some porous clays may have a dry bulk density well below 1 g/cm 3. Core samples are taken by pushing a metallic cutting edge into the soil at the desired depth or soil horizon. The soil samples are then oven dried (often at 105 °C) until constant weight.
Typical bulk density of sandy soil is between 1.5 and 1.7 g/cm 3. This calculates to a porosity between 0.43 and 0.36. Typical bulk density of clay soil is between 1.1 and 1.3 g/cm 3. This calculates to a porosity between 0.58 and 0.51. This seems counterintuitive because clay soils are termed heavy, implying lower porosity.