Search results
Results from the WOW.Com Content Network
In physics, the special theory of relativity, or special relativity for short, is a scientific theory of the relationship between space and time.In Albert Einstein's 1905 paper, On the Electrodynamics of Moving Bodies, the theory is presented as being based on just two postulates: [p 1] [1] [2]
Albert Einstein, physicist, 1879-1955, Graphic: Heikenwaelder Hugo,1999 Special relativity is a theory of the structure of spacetime . It was introduced in Einstein's 1905 paper " On the Electrodynamics of Moving Bodies " (for the contributions of many other physicists and mathematicians, see History of special relativity ).
General relativity, also known as the general theory of relativity, and as Einstein's theory of gravity, is the geometric theory of gravitation published by Albert Einstein in 1915 and is the current description of gravitation in modern physics.
In physics, spacetime, also called the space-time continuum, is a mathematical model that fuses the three dimensions of space and the one dimension of time into a single four-dimensional continuum. Spacetime diagrams are useful in visualizing and understanding relativistic effects, such as how different observers perceive where and when events ...
Albert Einstein, 1921. On September 26, 1905 (received June 30), Albert Einstein published his annus mirabilis paper on what is now called special relativity. Einstein's paper includes a fundamental description of the kinematics of the rigid body, and it did not require an absolutely stationary space, such as the aether.
General relativity is a theory of gravitation that was developed by Albert Einstein between 1907 and 1915, with contributions by many others after 1915. According to general relativity, the observed gravitational attraction between masses results from the warping of space and time by those masses.
Tests of general relativity serve to establish observational evidence for the theory of general relativity.The first three tests, proposed by Albert Einstein in 1915, concerned the "anomalous" precession of the perihelion of Mercury, the bending of light in gravitational fields, and the gravitational redshift.
The two-postulate basis for special relativity is the one historically used by Einstein, and it is sometimes the starting point today. As Einstein himself later acknowledged, the derivation of the Lorentz transformation tacitly makes use of some additional assumptions, including spatial homogeneity, isotropy, and memorylessness. [3]