enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Factorial - Wikipedia

    en.wikipedia.org/wiki/Factorial

    11: 39 916 800: 12: 479 001 600: 13: 6 227 020 800: 14: ... the factorial of a non-negative integer ... Divide all of the exponents by two (rounding down to an ...

  3. Double factorial - Wikipedia

    en.wikipedia.org/wiki/Double_factorial

    I propose to write !! for such products, and if a name be required for the product to call it the "alternate factorial" or the "double factorial". Meserve (1948) [9] states that the double factorial was originally introduced in order to simplify the expression of certain trigonometric integrals that arise in the derivation of the Wallis product.

  4. Factorial number system - Wikipedia

    en.wikipedia.org/wiki/Factorial_number_system

    The factorial number system is a mixed radix numeral system: the i-th digit from the right has base i, which means that the digit must be strictly less than i, and that (taking into account the bases of the less significant digits) its value is to be multiplied by (i − 1)!

  5. Falling and rising factorials - Wikipedia

    en.wikipedia.org/wiki/Falling_and_rising_factorials

    In this article, the symbol () is used to represent the falling factorial, and the symbol () is used for the rising factorial. These conventions are used in combinatorics , [ 4 ] although Knuth 's underline and overline notations x n _ {\displaystyle x^{\underline {n}}} and x n ¯ {\displaystyle x^{\overline {n}}} are increasingly popular.

  6. Kempner function - Wikipedia

    en.wikipedia.org/wiki/Kempner_function

    In number theory, the Kempner function [1] is defined for a given positive integer to be the smallest number such that divides the factorial!. For example, the number 8 {\displaystyle 8} does not divide 1 ! {\displaystyle 1!} , 2 ! {\displaystyle 2!} , or 3 ! {\displaystyle 3!} , but does divide 4 ! {\displaystyle 4!} , so S ( 8 ) = 4 ...

  7. Table of prime factors - Wikipedia

    en.wikipedia.org/wiki/Table_of_prime_factors

    The multiplicity of a prime which does not divide n may be called 0 or may be ... 9, 11, 13, 15, 17, 19, 21, 23 ... A factorial x! is the product of all ...

  8. Stirling's approximation - Wikipedia

    en.wikipedia.org/wiki/Stirling's_approximation

    However, the gamma function, unlike the factorial, is more broadly defined for all complex numbers other than non-positive integers; nevertheless, Stirling's formula may still be applied.

  9. Legendre's formula - Wikipedia

    en.wikipedia.org/wiki/Legendre's_formula

    Since ! is the product of the integers 1 through n, we obtain at least one factor of p in ! for each multiple of p in {,, …,}, of which there are ⌊ ⌋.Each multiple of contributes an additional factor of p, each multiple of contributes yet another factor of p, etc. Adding up the number of these factors gives the infinite sum for (!