Search results
Results from the WOW.Com Content Network
The multiplicity of a prime factor p of n is the largest exponent m for which p m divides n. The tables show the multiplicity for each prime factor. ... 75: 3·5 2: ...
All prime numbers from 31 to 6,469,693,189 for free download. Lists of Primes at the Prime Pages. The Nth Prime Page Nth prime through n=10^12, pi(x) through x=3*10^13, Random primes in same range. Interface to a list of the first 98 million primes (primes less than 2,000,000,000) Weisstein, Eric W. "Prime Number Sequences". MathWorld.
The same prime factor may occur more than once; this example has two copies of the prime factor When a prime occurs multiple times, exponentiation can be used to group together multiple copies of the same prime number: for example, in the second way of writing the product above, 5 2 {\displaystyle 5^{2}} denotes the square or second power of 5 ...
The only base-4 repunit prime is 5 (). = (+) (), and 3 always divides + when n is odd and when n is even. For n greater than 2, both + and are greater than 3, so removing the factor of 3 still leaves two factors greater than 1.
The table below lists the largest currently known prime numbers and probable primes ... 75 25×2 13719266 + 1 20 September 2022 4,129,912 76 81×2 13708272 + 1
The following is a list of all currently known Mersenne primes and perfect numbers, along with their corresponding exponents p. As of 2024, there are 52 known Mersenne primes (and therefore perfect numbers), the largest 18 of which have been discovered by the distributed computing project Great Internet Mersenne Prime Search, or GIMPS. [2]
A prime number q is a strong prime if q + 1 and q − 1 both have some large (around 500 digits) prime factors. For a safe prime q = 2p + 1, the number q − 1 naturally has a large prime factor, namely p, and so a safe prime q meets part of the criteria for being a strong prime. The running times of some methods of factoring a number with q as ...
The multiplicative property of the norm implies that a prime number p is either a Gaussian prime or the norm of a Gaussian prime. Fermat's theorem asserts that the first case occurs when p = 4 k + 3 , {\displaystyle p=4k+3,} and that the second case occurs when p = 4 k + 1 {\displaystyle p=4k+1} and p = 2. {\displaystyle p=2.}