enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Root-finding algorithm - Wikipedia

    en.wikipedia.org/wiki/Root-finding_algorithm

    In numerical analysis, a root-finding algorithm is an algorithm for finding zeros, also called "roots", of continuous functions. A zero of a function f is a number x such that f ( x ) = 0 . As, generally, the zeros of a function cannot be computed exactly nor expressed in closed form , root-finding algorithms provide approximations to zeros.

  3. Newton's method - Wikipedia

    en.wikipedia.org/wiki/Newton's_method

    An important application is Newton–Raphson division, which can be used to quickly find the reciprocal of a number a, using only multiplication and subtraction, that is to say the number x such that ⁠ 1 / x ⁠ = a. We can rephrase that as finding the zero of f(x) = ⁠ 1 / x ⁠ − a. We have f ′ (x) = − ⁠ 1 / x 2 ⁠. Newton's ...

  4. Zero of a function - Wikipedia

    en.wikipedia.org/wiki/Zero_of_a_function

    The fundamental theorem of algebra shows that any non-zero polynomial has a number of roots at most equal to its degree, and that the number of roots and the degree are equal when one considers the complex roots (or more generally, the roots in an algebraically closed extension) counted with their multiplicities. [3]

  5. Multiplicity (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Multiplicity_(mathematics)

    We can also define the multiplicity of the zeroes and poles of a meromorphic function. If we have a meromorphic function =, take the Taylor expansions of g and h about a point z 0, and find the first non-zero term in each (denote the order of the terms m and n respectively) then if m = n, then the point has non-zero value.

  6. Secant method - Wikipedia

    en.wikipedia.org/wiki/Secant_method

    In numerical analysis, the secant method is a root-finding algorithm that uses a succession of roots of secant lines to better approximate a root of a function f. The secant method can be thought of as a finite-difference approximation of Newton's method , so it is considered a quasi-Newton method .

  7. Rouché's theorem - Wikipedia

    en.wikipedia.org/wiki/Rouché's_theorem

    One advantage of this proof over the others is that it shows not only that a polynomial must have a zero but the number of its zeros is equal to its degree (counting, as usual, multiplicity). Another use of Rouché's theorem is to prove the open mapping theorem for analytic functions. We refer to the article for the proof.

  8. Kylie Kelce Lists the 1 Thing You Shouldn't Ask Her ... - AOL

    www.aol.com/kylie-kelce-lists-1-thing-141948852.html

    True to form, Kylie kept it real, adding, “I still can't believe that people think that women who are building a human being want to hear anything about their size. Newsflash, they don't. Cut ...

  9. Bézout's theorem - Wikipedia

    en.wikipedia.org/wiki/Bézout's_theorem

    The concept of multiplicity is fundamental for Bézout's theorem, as it allows having an equality instead of a much weaker inequality. Intuitively, the multiplicity of a common zero of several polynomials is the number of zeros into which the common zero can split when the coefficients are slightly changed.