Search results
Results from the WOW.Com Content Network
The generalized Hough transform (GHT), introduced by Dana H. Ballard in 1981, is the modification of the Hough transform using the principle of template matching. [1] The Hough transform was initially developed to detect analytically defined shapes (e.g., line, circle, ellipse etc.).
Dana Harry Ballard (1946–2022) was a professor of computer science at the University of Texas at Austin and formerly with the University of Rochester. [1] Ballard attended MIT and graduated in 1967 with his bachelor's degree in aeronautics and astronautics. He then attended the University of Michigan for his masters in information and control ...
The Hough transform as it is universally used today was invented by Richard Duda and Peter Hart in 1972, who called it a "generalized Hough transform" [3] after the related 1962 patent of Paul Hough. [ 4 ] [ 5 ] The transform was popularized in the computer vision community by Dana H. Ballard through a 1981 journal article titled " Generalizing ...
The Hough transform [3] can be used to detect lines and the output is a parametric description of the lines in an image, for example ρ = r cos(θ) + c sin(θ). [1] If there is a line in a row and column based image space, it can be defined ρ, the distance from the origin to the line along a perpendicular to the line, and θ, the angle of the perpendicular projection from the origin to the ...
Plot of the generalized hypergeometric function pFq(a b z) with a=(2,4,6,8) and b=(2,3,5,7,11) in the complex plane from -2-2i to 2+2i created with Mathematica 13.1 function ComplexPlot3D. In mathematics, a generalized hypergeometric series is a power series in which the ratio of successive coefficients indexed by n is a rational function of n.
Liberal netizens tore into the elderly husband of Sen. Deb Fischer (R-Neb.) for appearing to turn down Vice President Kamala Harris’ handshake last week, but viral footage that swirled online ...
For example, the definite integral over the positive real axis of any function g(x) that can be written as a product G 1 (cx γ)·G 2 (dx δ) of two G-functions with rational γ/δ equals just another G-function, and generalizations of integral transforms like the Hankel transform and the Laplace transform and their inverses result when ...
However, a Lévy process that is generalised hyperbolic at one point in time might fail to be generalized hyperbolic at another point in time. In fact, the generalized Laplace distributions and the normal inverse Gaussian distributions are the only subclasses of the generalized hyperbolic distributions that are closed under convolution. [4]