enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Spectrum of a matrix - Wikipedia

    en.wikipedia.org/wiki/Spectrum_of_a_matrix

    Thus the elements of the spectrum are precisely the eigenvalues of T, and the multiplicity of an eigenvalue λ in the spectrum equals the dimension of the generalized eigenspace of T for λ (also called the algebraic multiplicity of λ). Now, fix a basis B of V over K and suppose M ∈ Mat K (V) is a matrix.

  3. Eigenvalue algorithm - Wikipedia

    en.wikipedia.org/wiki/Eigenvalue_algorithm

    Given an n × n square matrix A of real or complex numbers, an eigenvalue λ and its associated generalized eigenvector v are a pair obeying the relation [1] =,where v is a nonzero n × 1 column vector, I is the n × n identity matrix, k is a positive integer, and both λ and v are allowed to be complex even when A is real.l When k = 1, the vector is called simply an eigenvector, and the pair ...

  4. Eigenvalues and eigenvectors - Wikipedia

    en.wikipedia.org/wiki/Eigenvalues_and_eigenvectors

    On the other hand, the geometric multiplicity of the eigenvalue 2 is only 1, because its eigenspace is spanned by just one vector [] and is therefore 1-dimensional. Similarly, the geometric multiplicity of the eigenvalue 3 is 1 because its eigenspace is spanned by just one vector [ 0 0 0 1 ] T {\displaystyle {\begin{bmatrix}0&0&0&1\end{bmatrix ...

  5. Eigendecomposition of a matrix - Wikipedia

    en.wikipedia.org/wiki/Eigendecomposition_of_a_matrix

    The decomposition can be derived from the fundamental property of eigenvectors: = = =. The linearly independent eigenvectors q i with nonzero eigenvalues form a basis (not necessarily orthonormal) for all possible products Ax, for x ∈ C n, which is the same as the image (or range) of the corresponding matrix transformation, and also the ...

  6. Inverse iteration - Wikipedia

    en.wikipedia.org/wiki/Inverse_iteration

    In numerical analysis, inverse iteration (also known as the inverse power method) is an iterative eigenvalue algorithm. It allows one to find an approximate eigenvector when an approximation to a corresponding eigenvalue is already known. The method is conceptually similar to the power method. It appears to have originally been developed to ...

  7. Arnoldi iteration - Wikipedia

    en.wikipedia.org/wiki/Arnoldi_iteration

    In numerical linear algebra, the Arnoldi iteration is an eigenvalue algorithm and an important example of an iterative method.Arnoldi finds an approximation to the eigenvalues and eigenvectors of general (possibly non-Hermitian) matrices by constructing an orthonormal basis of the Krylov subspace, which makes it particularly useful when dealing with large sparse matrices.

  8. Eigenvalue perturbation - Wikipedia

    en.wikipedia.org/wiki/Eigenvalue_perturbation

    In mathematics, an eigenvalue perturbation problem is that of finding the eigenvectors and eigenvalues of a system = that is perturbed from one with known eigenvectors and eigenvalues =. This is useful for studying how sensitive the original system's eigenvectors and eigenvalues x 0 i , λ 0 i , i = 1 , … n {\displaystyle x_{0i},\lambda _{0i ...

  9. Gershgorin circle theorem - Wikipedia

    en.wikipedia.org/wiki/Gershgorin_circle_theorem

    There are two types of continuity concerning eigenvalues: (1) each individual eigenvalue is a usual continuous function (such a representation does exist on a real interval but may not exist on a complex domain), (2) eigenvalues are continuous as a whole in the topological sense (a mapping from the matrix space with metric induced by a norm to ...