Search results
Results from the WOW.Com Content Network
In physics, Hooke's law is an empirical law which states that the force (F) needed to extend or compress a spring by some distance (x) scales linearly with respect to that distance—that is, F s = kx, where k is a constant factor characteristic of the spring (i.e., its stiffness), and x is small compared to the total possible deformation of the spring.
The first constitutive equation (constitutive law) was developed by Robert Hooke and is known as Hooke's law.It deals with the case of linear elastic materials.Following this discovery, this type of equation, often called a "stress-strain relation" in this example, but also called a "constitutive assumption" or an "equation of state" was commonly used.
In Newtonian mechanics, for one-dimensional simple harmonic motion, the equation of motion, which is a second-order linear ordinary differential equation with constant coefficients, can be obtained by means of Newton's second law and Hooke's law for a mass on a spring.
This relationship is known as Hooke's law. A geometry-dependent version of the idea [a] was first formulated by Robert Hooke in 1675 as a Latin anagram, "ceiiinosssttuv". He published the answer in 1678: "Ut tensio, sic vis" meaning "As the extension, so the force", [5] [6] a linear relationship commonly referred to as Hooke's law.
In simple harmonic motion of a spring-mass system, energy will fluctuate between kinetic energy and potential energy, but the total energy of the system remains the same. A spring that obeys Hooke's Law with spring constant k will have a total system energy E of: [14] = ()
Hooke's law gives the relationship of the force exerted by the spring when the spring is compressed or stretched a certain length: = (), where F is the force, k is the spring constant, and x is the displacement of the mass with respect to the equilibrium position. The minus sign in the equation indicates that the force exerted by the spring ...
This linear relationship was described by Robert Hooke in 1676, for whom Hooke's law is named. If Δ x {\displaystyle \Delta x} is the displacement, the force exerted by an ideal spring equals: F = − k Δ x , {\displaystyle \mathbf {F} =-k\Delta \mathbf {x} ,} where k {\displaystyle k} is the spring constant (or force constant), which is ...
Expressed in terms of components with respect to a rectangular Cartesian coordinate system, the governing equations of linear elasticity are: [1]. Equation of motion: , + = where the (), subscript is a shorthand for () / and indicates /, = is the Cauchy stress tensor, is the body force density, is the mass density, and is the displacement.