Search results
Results from the WOW.Com Content Network
In physics, Hooke's law is an empirical law which states that the force (F) needed to extend or compress a spring by some distance (x) scales linearly with respect to that distance—that is, F s = kx, where k is a constant factor characteristic of the spring (i.e., its stiffness), and x is small compared to the total possible deformation of the spring.
In 1676 British physicist Robert Hooke postulated Hooke's law, which states that the force a spring exerts is proportional to its extension. On March 8, 1850, John Evans, Founder of John Evans' Sons, Incorporated, opened his business in New Haven, Connecticut, manufacturing flat springs for carriages and other vehicles, as well as the machinery ...
1678 – Robert Hooke publishes Hooke's law describing linear deformation of a spring. 1687 – Isaac Newton publishes Philosophiæ Naturalis Principia Mathematica (Mathematical Principles of Natural Philosophy), introducing the Newton's laws of motion of classical mechanics. [11] He also introduces the concept of Newtonian fluid.
The first constitutive equation (constitutive law) was developed by Robert Hooke and is known as Hooke's law.It deals with the case of linear elastic materials.Following this discovery, this type of equation, often called a "stress-strain relation" in this example, but also called a "constitutive assumption" or an "equation of state" was commonly used.
In Newtonian mechanics, for one-dimensional simple harmonic motion, the equation of motion, which is a second-order linear ordinary differential equation with constant coefficients, can be obtained by means of Newton's second law and Hooke's law for a mass on a spring.
For a stretched spring fixed at one end obeying Hooke's law, the elastic potential energy is = where r 2 and r 1 are collinear coordinates of the free end of the spring, in the direction of the extension/compression, and k is the spring constant.
This relationship is known as Hooke's law. A geometry-dependent version of the idea [a] was first formulated by Robert Hooke in 1675 as a Latin anagram, "ceiiinosssttuv". He published the answer in 1678: "Ut tensio, sic vis" meaning "As the extension, so the force", [5] [6] a linear relationship commonly referred to as Hooke's law.
Hooke's law gives the relationship of the force exerted by the spring when the spring is compressed or stretched a certain length: = (), where F is the force, k is the spring constant, and x is the displacement of the mass with respect to the equilibrium position. The minus sign in the equation indicates that the force exerted by the spring ...