Search results
Results from the WOW.Com Content Network
Bacteria have a σ-factor that detects and binds to promoter sites but eukaryotes do not need a σ-factor. Instead, eukaryotes have transcription factors that allow the recognition and binding of promoter sites. [2] Overall, transcription within bacteria is a highly regulated process that is controlled by the integration of many signals at a ...
The transcription preinitiation complex is a large complex of proteins that is necessary for the transcription of protein-coding genes in eukaryotes and archaea. It attaches to the promoter of the DNA (e.i., TATA box) and helps position the RNA polymerase II to the gene transcription start sites, denatures the DNA, and then starts transcription.
However, changes of the DNA binding specificities of the single-copy Leafy transcription factor, which occurs in most land plants, have recently been elucidated. In that respect, a single-copy transcription factor can undergo a change of specificity through a promiscuous intermediate without losing function.
Similar to the sigma factors in prokaryotes, the general transcription factors (GTFs) are a set of factors in eukaryotes that are required for all transcription events. These factors are responsible for stabilizing binding interactions and opening the DNA helix to allow the RNA polymerase to access the template, but generally lack specificity ...
A sigma factor (σ factor or specificity factor) is a protein needed for initiation of transcription in bacteria. [1] [2] It is a bacterial transcription initiation factor that enables specific binding of RNA polymerase (RNAP) to gene promoters. It is homologous to archaeal transcription factor B and to eukaryotic factor TFIIB. [3]
A transcriptional activator is a protein (transcription factor) that increases transcription of a gene or set of genes. [1] Activators are considered to have positive control over gene expression, as they function to promote gene transcription and, in some cases, are required for the transcription of genes to occur.
DNA gene structure of a eukaryote. In genetics, a silencer is a DNA sequence capable of binding transcription regulation factors, called repressors. DNA contains genes and provides the template to produce messenger RNA (mRNA). That mRNA is then translated into proteins.
In bacteria, termination of RNA transcription can be rho-dependent or rho-independent. The former relies on the rho factor, which destabilizes the DNA-RNA heteroduplex and causes RNA release. [22] The latter, also known as intrinsic termination, relies on a palindromic region of DNA. Transcribing the region causes the formation of a "hairpin ...