Search results
Results from the WOW.Com Content Network
In mathematics, more specifically in functional analysis, a Banach space (pronounced ) is a complete normed vector space.Thus, a Banach space is a vector space with a metric that allows the computation of vector length and distance between vectors and is complete in the sense that a Cauchy sequence of vectors always converges to a well-defined limit that is within the space.
There is a canonical evaluation map ′ (,) (from the projective tensor product of and to the Banach space of continuous linear maps from to ). It is determined by sending f ∈ A ′ {\displaystyle f\in A^{\prime }} and b ∈ B {\displaystyle b\in B} to the linear map a ↦ f ( a ) ⋅ b . {\displaystyle a\mapsto f(a)\cdot b.}
In functional analysis, the type and cotype of a Banach space are a classification of Banach spaces through probability theory and a measure, how far a Banach space from a Hilbert space is. The starting point is the Pythagorean identity for orthogonal vectors ( e k ) k = 1 n {\displaystyle (e_{k})_{k=1}^{n}} in Hilbert spaces
Tsirelson space, a reflexive Banach space in which neither nor can be embedded. W.T. Gowers construction of a space X {\displaystyle X} that is isomorphic to X ⊕ X ⊕ X {\displaystyle X\oplus X\oplus X} but not X ⊕ X {\displaystyle X\oplus X} serves as a counterexample for weakening the premises of the Schroeder–Bernstein theorem [ 1 ]
An important early example was the Banach algebra of essentially bounded measurable functions on a measure space X. This set of functions is a Banach space under pointwise addition and scalar multiplication. With the operation of pointwise multiplication, it becomes a special type of Banach space, one now called a commutative von Neumann algebra.
A bounded disk in a topological vector space such that (,) is a Banach space is called a Banach disk, infracomplete, or a bounded completant in . If its shown that ( span D , p D ) {\displaystyle \left(\operatorname {span} D,p_{D}\right)} is a Banach space then D {\displaystyle D} will be a Banach disk in any TVS that contains D ...
If Y is a Banach space, an equivalent definition is that the embedding operator (the identity) i : X → Y is a compact operator. When applied to functional analysis, this version of compact embedding is usually used with Banach spaces of functions. Several of the Sobolev embedding theorems are compact embedding theorems.
Theorem — Let X be a Banach space, C be a compact operator acting on X, and σ(C) be the spectrum of C. Every nonzero λ ∈ σ(C) is an eigenvalue of C. For all nonzero λ ∈ σ(C), there exist m such that Ker((λ − C) m) = Ker((λ − C) m+1), and this subspace is finite-dimensional. The eigenvalues can only accumulate at 0.