Search results
Results from the WOW.Com Content Network
The hydroxyl radical can damage virtually all types of macromolecules: carbohydrates, nucleic acids , lipids (lipid peroxidation) and amino acids (e.g. conversion of Phe to m-Tyrosine and o-Tyrosine). The hydroxyl radical has a very short in vivo half-life of approximately 10 −9 seconds and a high reactivity. [5]
As hydroxyl radicals are short-lived in solution, they need to be generated upon experiment. This can be done using H 2 O 2, ascorbic acid, and Fe(II)-EDTA complex. These reagents form a system that generates hydroxyl radicals through Fenton chemistry. The hydroxyl radicals can then react with the nucleic acid molecules. [17]
In chemistry, a hydroxy or hydroxyl group is a functional group with the chemical formula −OH and composed of one oxygen atom covalently bonded to one hydrogen atom. In organic chemistry , alcohols and carboxylic acids contain one or more hydroxy groups.
The fact that oxygen changes the radiation chemistry might be one reason why oxygenated tissues are more sensitive to irradiation than the deoxygenated tissue at the center of a tumor. The free radicals, such as the hydroxyl radical, chemically modify biomolecules such as DNA, leading to damage such as breaks in the DNA strands. Some substances ...
The hydroxyl radical, Lewis structure shown, contains one unpaired electron. Lewis dot structure of a Hydroxide ion compared to a hydroxyl radical. In chemistry, a radical, also known as a free radical, is an atom, molecule, or ion that has at least one unpaired valence electron.
2-Mercaptoethanol (also β-mercaptoethanol, BME, 2BME, 2-ME or β-met) is the chemical compound with the formula HOCH 2 CH 2 SH. ME or βME, as it is commonly abbreviated, is used to reduce disulfide bonds and can act as a biological antioxidant by scavenging hydroxyl radicals (amongst others). It is widely used because the hydroxyl group ...
The free radicals generated by this process engage in secondary reactions. For example, the hydroxyl is a powerful, non-selective oxidant. [6] Oxidation of an organic compound by Fenton's reagent is rapid and exothermic and results in the oxidation of contaminants to primarily carbon dioxide and water.
A critical feature of these experiments is the need to expose proteins to hydroxyl radicals for limited timescales on the order of 1–50 ms inducing 10-30% oxidation of total protein. A further requirement is to generate hydroxyl radicals from the bulk solvent (i.e. water) (equations 1 and 2) not hydrogen peroxide which can remain to oxidize ...