Search results
Results from the WOW.Com Content Network
In plants, ATP is synthesized in the thylakoid membrane of the chloroplast. The process is called photophosphorylation. The "machinery" is similar to that in mitochondria except that light energy is used to pump protons across a membrane to produce a proton-motive force. ATP synthase then ensues exactly as in oxidative phosphorylation. [28]
The macronutrients are taken-up in larger quantities; hydrogen, oxygen, nitrogen and carbon contribute to over 95% of a plant's entire biomass on a dry matter weight basis. Micronutrients are present in plant tissue in quantities measured in parts per million, ranging from 0.1 [ 3 ] to 200 ppm, or less than 0.02% dry weight.
When animals and fungi consume plants, they use cellular respiration to break down these stored carbohydrates to make energy available to cells. [2] Both animals and plants temporarily store the released energy in the form of high-energy molecules, such as adenosine triphosphate (ATP), for use in various cellular processes.
Aerobic respiration requires oxygen (O 2) in order to create ATP.Although carbohydrates, fats and proteins are consumed as reactants, aerobic respiration is the preferred method of pyruvate production in glycolysis, and requires pyruvate to the mitochondria in order to be oxidized by the citric acid cycle.
Steps 1 and 3 require the input of energy derived from the hydrolysis of ATP to ADP and P i (inorganic phosphate), whereas steps 7 and 10 require the input of ADP, each yielding ATP. [7] The enzymes necessary to break down glucose are found in the cytoplasm , the viscous fluid that fills living cells, where the glycolytic reactions take place.
Phosphorylation is essential to the processes of both anaerobic and aerobic respiration, which involve the production of adenosine triphosphate (ATP), the "high-energy" exchange medium in the cell. During aerobic respiration, ATP is synthesized in the mitochondrion by addition of a third phosphate group to adenosine diphosphate (ADP) in a ...
Both the structure of ATP synthase and its underlying gene are remarkably similar in all known forms of life. ATP synthase is powered by a transmembrane electrochemical potential gradient, usually in the form of a proton gradient. In all living organisms, a series of redox reactions is used to produce a transmembrane electrochemical potential ...
Peter D. Mitchell proposed the chemiosmotic hypothesis in 1961. [1] In brief, the hypothesis was that most adenosine triphosphate (ATP) synthesis in respiring cells comes from the electrochemical gradient across the inner membranes of mitochondria by using the energy of NADH and FADH 2 formed during the oxidative breakdown of energy-rich molecules such as glucose.