Search results
Results from the WOW.Com Content Network
The greatest common divisor g of a and b is the unique (positive) common divisor of a and b that is divisible by any other common divisor c. [6] The greatest common divisor can be visualized as follows. [7] Consider a rectangular area a by b, and any common divisor c that divides both a and b exactly.
Animation showing an application of the Euclidean algorithm to find the greatest common divisor of 62 and 36, which is 2. A more efficient method is the Euclidean algorithm , a variant in which the difference of the two numbers a and b is replaced by the remainder of the Euclidean division (also called division with remainder ) of a by b .
The greatest common divisor of p and q is usually denoted "gcd(p, q)". The greatest common divisor is not unique: if d is a GCD of p and q , then the polynomial f is another GCD if and only if there is an invertible element u of F such that f = u d {\displaystyle f=ud} and d = u − 1 f . {\displaystyle d=u^{-1}f.}
The binary GCD algorithm, also known as Stein's algorithm or the binary Euclidean algorithm, [1] [2] is an algorithm that computes the greatest common divisor (GCD) of two nonnegative integers. Stein's algorithm uses simpler arithmetic operations than the conventional Euclidean algorithm ; it replaces division with arithmetic shifts ...
Flowchart of using successive subtractions to find the greatest common divisor of number r and s. In mathematics and computer science, an algorithm (/ ˈ æ l ɡ ə r ɪ ð əm / ⓘ) is a finite sequence of mathematically rigorous instructions, typically used to solve a class of specific problems or to perform a computation. [1]
Two whole numbers m and n are called coprime if their greatest common divisor is 1, that is, if there is no prime number that divides both of them. Then an arithmetic function a is additive if a(mn) = a(m) + a(n) for all coprime natural numbers m and n; multiplicative if a(mn) = a(m)a(n) for all coprime natural numbers m and n.
Get AOL Mail for FREE! Manage your email like never before with travel, photo & document views. Personalize your inbox with themes & tabs. You've Got Mail!
In other words, every GCD domain is a Schreier domain. For every pair of elements x, y of a GCD domain R, a GCD d of x and y and an LCM m of x and y can be chosen such that dm = xy, or stated differently, if x and y are nonzero elements and d is any GCD d of x and y, then xy/d is an LCM of x and y, and vice versa.