Ads
related to: center of symmetry geometry
Search results
Results from the WOW.Com Content Network
A symmetry of the projective plane with a given conic relates every point or pole to a line called its polar. The concept of centre in projective geometry uses this relation. The following assertions are from G. B. Halsted. [3] The harmonic conjugate of a point at infinity with respect to the end points of a finite sect is the 'centre' of that ...
A drawing of a butterfly with bilateral symmetry, with left and right sides as mirror images of each other.. In geometry, an object has symmetry if there is an operation or transformation (such as translation, scaling, rotation or reflection) that maps the figure/object onto itself (i.e., the object has an invariance under the transform). [1]
In mathematics and physics, the centroid, also known as geometric center or center of figure, of a plane figure or solid figure is the arithmetic mean position of all the points in the surface of the figure. [further explanation needed] The same definition extends to any object in -dimensional Euclidean space. [1]
This article describes symmetry from three perspectives: in mathematics, including geometry, the most familiar type of symmetry for many people; in science and nature; and in the arts, covering architecture, art, and music. The opposite of symmetry is asymmetry, which refers to the absence of symmetry.
Symmetry occurs not only in geometry, but also in other branches of mathematics. Symmetry is a type of invariance: the property that a mathematical object remains unchanged under a set of operations or transformations. [1] Given a structured object X of any sort, a symmetry is a mapping of the object
Center of symmetry or inversion center, abbreviated i. A molecule has a center of symmetry when, for any atom in the molecule, an identical atom exists diametrically opposite this center an equal distance from it. In other words, a molecule has a center of symmetry when the points (x,y,z) and (−x,−y,−z) of the molecule always look identical.
Space Only the trivial isometry group C 1 leaves the whole space fixed. Plane C s with respect to a plane leaves that plane fixed. Line Isometry groups leaving a line fixed are isometries which in every plane perpendicular to that line have common 2D point groups in two dimensions with respect to the point of intersection of the line and the planes.
In mathematics, a symmetry operation is a geometric transformation of an object that leaves the object looking the same after it has been carried out. For example, a 1 ⁄ 3 turn rotation of a regular triangle about its center, a reflection of a square across its diagonal, a translation of the Euclidean plane, or a point reflection of a sphere through its center are all symmetry operations.
Ads
related to: center of symmetry geometry