enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Divided differences - Wikipedia

    en.wikipedia.org/wiki/Divided_differences

    In mathematics, divided differences is an algorithm, historically used for computing tables of logarithms and trigonometric functions. [citation needed] Charles Babbage's difference engine, an early mechanical calculator, was designed to use this algorithm in its operation. [1] Divided differences is a recursive division process.

  3. Neville's algorithm - Wikipedia

    en.wikipedia.org/wiki/Neville's_algorithm

    Given n + 1 points, there is a unique polynomial of degree ≤ n which goes through the given points. Neville's algorithm evaluates this polynomial. Neville's algorithm is based on the Newton form of the interpolating polynomial and the recursion relation for the divided differences.

  4. Difference quotient - Wikipedia

    en.wikipedia.org/wiki/Difference_quotient

    The difference between two points, themselves, is known as their Delta (ΔP), as is the difference in their function result, the particular notation being determined by the direction of formation: Forward difference: ΔF(P) = F(P + ΔP) − F(P); Central difference: δF(P) = F(P + ⁠ 1 / 2 ⁠ ΔP) − F(P − ⁠ 1 / 2 ⁠ ΔP);

  5. Numerical differentiation - Wikipedia

    en.wikipedia.org/wiki/Numerical_differentiation

    The classical finite-difference approximations for numerical differentiation are ill-conditioned. However, if f {\displaystyle f} is a holomorphic function , real-valued on the real line, which can be evaluated at points in the complex plane near x {\displaystyle x} , then there are stable methods.

  6. Finite difference - Wikipedia

    en.wikipedia.org/wiki/Finite_difference

    A finite difference is a mathematical expression of the form f (x + b) − f (x + a).If a finite difference is divided by b − a, one gets a difference quotient.The approximation of derivatives by finite differences plays a central role in finite difference methods for the numerical solution of differential equations, especially boundary value problems.

  7. Steffensen's method - Wikipedia

    en.wikipedia.org/wiki/Steffensen's_method

    There, the function is a divided difference. In the generalized form here, the operator G {\displaystyle \ G\ } is the analogue of a divided difference for use in the Banach space . The operator G {\displaystyle \ G\ } is roughly equivalent to a matrix whose entries are all functions of vector arguments u {\displaystyle \ u\ } and v ...

  8. Lagrange polynomial - Wikipedia

    en.wikipedia.org/wiki/Lagrange_polynomial

    Then the difference () ... is the notation for divided differences. Alternatively, the remainder can be expressed as a contour integral in complex domain as ...

  9. Newton polynomial - Wikipedia

    en.wikipedia.org/wiki/Newton_polynomial

    The divided difference methods have the advantage that more data points can be added, for improved accuracy. The terms based on the previous data points can continue to be used. With the ordinary Lagrange formula, to do the problem with more data points would require re-doing the whole problem.