enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Experimental uncertainty analysis - Wikipedia

    en.wikipedia.org/wiki/Experimental_uncertainty...

    Essentially, the mean is the location of the PDF on the real number line, and the variance is a description of the scatter or dispersion or width of the PDF. To illustrate, Figure 1 shows the so-called Normal PDF , which will be assumed to be the distribution of the observed time periods in the pendulum experiment.

  3. Uncertainty budget - Wikipedia

    en.wikipedia.org/wiki/Uncertainty_budget

    The measurement uncertainty budget is determined once and remains constant. With a constant measurement uncertainty budget, complete data records can now be acquired. The measurement uncertainty applies to every single measurement point. If the measurement uncertainty is constant, this simplifies the further processing based on the data records.

  4. Uncertainty analysis - Wikipedia

    en.wikipedia.org/wiki/Uncertainty_analysis

    In physical experiments uncertainty analysis, or experimental uncertainty assessment, deals with assessing the uncertainty in a measurement.An experiment designed to determine an effect, demonstrate a law, or estimate the numerical value of a physical variable will be affected by errors due to instrumentation, methodology, presence of confounding effects and so on.

  5. Sensitivity analysis - Wikipedia

    en.wikipedia.org/wiki/Sensitivity_analysis

    Taking into account uncertainty arising from different sources, whether in the context of uncertainty analysis or sensitivity analysis (for calculating sensitivity indices), requires multiple samples of the uncertain parameters and, consequently, running the model (evaluating the -function) multiple times. Depending on the complexity of the ...

  6. Measurement uncertainty - Wikipedia

    en.wikipedia.org/wiki/Measurement_uncertainty

    In metrology, measurement uncertainty is the expression of the statistical dispersion of the values attributed to a quantity measured on an interval or ratio scale.. All measurements are subject to uncertainty and a measurement result is complete only when it is accompanied by a statement of the associated uncertainty, such as the standard deviation.

  7. Quantification of margins and uncertainties - Wikipedia

    en.wikipedia.org/wiki/Quantification_of_margins...

    Quantification of Margins and Uncertainty (QMU) is a decision support methodology for complex technical decisions. QMU focuses on the identification, characterization, and analysis of performance thresholds and their associated margins for engineering systems that are evaluated under conditions of uncertainty, particularly when portions of those results are generated using computational ...

  8. Propagation of uncertainty - Wikipedia

    en.wikipedia.org/wiki/Propagation_of_uncertainty

    Any non-linear differentiable function, (,), of two variables, and , can be expanded as + +. If we take the variance on both sides and use the formula [11] for the variance of a linear combination of variables ⁡ (+) = ⁡ + ⁡ + ⁡ (,), then we obtain | | + | | +, where is the standard deviation of the function , is the standard deviation of , is the standard deviation of and = is the ...

  9. Uncertainty quantification - Wikipedia

    en.wikipedia.org/wiki/Uncertainty_quantification

    Uncertainty quantification (UQ) is the science of quantitative characterization and estimation of uncertainties in both computational and real world applications. It tries to determine how likely certain outcomes are if some aspects of the system are not exactly known.