Search results
Results from the WOW.Com Content Network
Solar Energy Materials and Solar Cells is a scientific journal published by Elsevier covering research related to solar energy materials and solar cells. According to the Journal Citation Reports, Solar Energy Materials and Solar Cells has a 2020 impact factor of 7.267. [1]
The publications of the Institute of Electrical and Electronics Engineers (IEEE) constitute around 30% of the world literature in the electrical and electronics engineering and computer science fields, [citation needed] publishing well over 100 peer-reviewed journals. [1]
Flexible solar cell research is a research-level technology, an example of which was created at the Massachusetts Institute of Technology in which solar cells are manufactured by depositing photovoltaic material on flexible substrates, such as ordinary paper, using chemical vapor deposition technology. [22]
Flexible solar cell research is a research-level technology, an example of which was created at the Massachusetts Institute of Technology in which solar cells are manufactured by depositing photovoltaic material on flexible substrates, such as ordinary paper, using chemical vapor deposition technology.
Solar cell efficiency of perovskite solar cells have increased from 3.8% in 2009 [47] to 25.2% in 2020 in single-junction architectures, [48] and, in silicon-based tandem cells, to 29.1%, [48] exceeding the maximum efficiency achieved in single-junction silicon solar cells.
A solar cell or photovoltaic cell (PV cell) is an electronic device that converts the energy of light directly into electricity by means of the photovoltaic effect. [1] It is a form of photoelectric cell, a device whose electrical characteristics (such as current, voltage, or resistance) vary when it is exposed to light.
The primary function of a solar cell is the conversion of light energy into electrical energy by means of the photovoltaic effect. [16] In particular, polymer-fullerene bulk heterojunction solar cells are promising because of their potential in low processing costs and mechanical flexibility in comparison to conventional inorganic solar cells.
A direct plasmonic solar cell is a solar cell that converts light into electricity using plasmons as the active, photovoltaic material. The active material thickness varies from that of traditional silicon PV (~100-200 μm wafers) , [ 4 ] to less than 2 μm thick, and theoretically could be as thin as 100 nm. [ 5 ]